aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/crypto/blake2s/blake2s.go
blob: ae0dc922b9fa67ea46546beda168e8e7a3223499 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package blake2s implements the BLAKE2s hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xs.
//
// For a detailed specification of BLAKE2s see https://blake2.net/blake2.pdf
// and for BLAKE2Xs see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2s (Sum256 or New256).
// If you need a secret-key MAC (message authentication code), use the New256
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 32 bytes. It
// can produce hash values between 0 and 65535 bytes.
package blake2s // import "golang.org/x/crypto/blake2s"

import (
	"encoding/binary"
	"errors"
	"hash"
)

const (
	// The blocksize of BLAKE2s in bytes.
	BlockSize = 64

	// The hash size of BLAKE2s-256 in bytes.
	Size = 32

	// The hash size of BLAKE2s-128 in bytes.
	Size128 = 16
)

var errKeySize = errors.New("blake2s: invalid key size")

var iv = [8]uint32{
	0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
	0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
}

// Sum256 returns the BLAKE2s-256 checksum of the data.
func Sum256(data []byte) [Size]byte {
	var sum [Size]byte
	checkSum(&sum, Size, data)
	return sum
}

// New256 returns a new hash.Hash computing the BLAKE2s-256 checksum. A non-nil
// key turns the hash into a MAC. The key must between zero and 32 bytes long.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size, key) }

// New128 returns a new hash.Hash computing the BLAKE2s-128 checksum given a
// non-empty key. Note that a 128-bit digest is too small to be secure as a
// cryptographic hash and should only be used as a MAC, thus the key argument
// is not optional.
func New128(key []byte) (hash.Hash, error) {
	if len(key) == 0 {
		return nil, errors.New("blake2s: a key is required for a 128-bit hash")
	}
	return newDigest(Size128, key)
}

func newDigest(hashSize int, key []byte) (*digest, error) {
	if len(key) > Size {
		return nil, errKeySize
	}
	d := &digest{
		size:   hashSize,
		keyLen: len(key),
	}
	copy(d.key[:], key)
	d.Reset()
	return d, nil
}

func checkSum(sum *[Size]byte, hashSize int, data []byte) {
	var (
		h [8]uint32
		c [2]uint32
	)

	h = iv
	h[0] ^= uint32(hashSize) | (1 << 16) | (1 << 24)

	if length := len(data); length > BlockSize {
		n := length &^ (BlockSize - 1)
		if length == n {
			n -= BlockSize
		}
		hashBlocks(&h, &c, 0, data[:n])
		data = data[n:]
	}

	var block [BlockSize]byte
	offset := copy(block[:], data)
	remaining := uint32(BlockSize - offset)

	if c[0] < remaining {
		c[1]--
	}
	c[0] -= remaining

	hashBlocks(&h, &c, 0xFFFFFFFF, block[:])

	for i, v := range h {
		binary.LittleEndian.PutUint32(sum[4*i:], v)
	}
}

type digest struct {
	h      [8]uint32
	c      [2]uint32
	size   int
	block  [BlockSize]byte
	offset int

	key    [BlockSize]byte
	keyLen int
}

func (d *digest) BlockSize() int { return BlockSize }

func (d *digest) Size() int { return d.size }

func (d *digest) Reset() {
	d.h = iv
	d.h[0] ^= uint32(d.size) | (uint32(d.keyLen) << 8) | (1 << 16) | (1 << 24)
	d.offset, d.c[0], d.c[1] = 0, 0, 0
	if d.keyLen > 0 {
		d.block = d.key
		d.offset = BlockSize
	}
}

func (d *digest) Write(p []byte) (n int, err error) {
	n = len(p)

	if d.offset > 0 {
		remaining := BlockSize - d.offset
		if n <= remaining {
			d.offset += copy(d.block[d.offset:], p)
			return
		}
		copy(d.block[d.offset:], p[:remaining])
		hashBlocks(&d.h, &d.c, 0, d.block[:])
		d.offset = 0
		p = p[remaining:]
	}

	if length := len(p); length > BlockSize {
		nn := length &^ (BlockSize - 1)
		if length == nn {
			nn -= BlockSize
		}
		hashBlocks(&d.h, &d.c, 0, p[:nn])
		p = p[nn:]
	}

	d.offset += copy(d.block[:], p)
	return
}

func (d *digest) Sum(sum []byte) []byte {
	var hash [Size]byte
	d.finalize(&hash)
	return append(sum, hash[:d.size]...)
}

func (d *digest) finalize(hash *[Size]byte) {
	var block [BlockSize]byte
	h := d.h
	c := d.c

	copy(block[:], d.block[:d.offset])
	remaining := uint32(BlockSize - d.offset)
	if c[0] < remaining {
		c[1]--
	}
	c[0] -= remaining

	hashBlocks(&h, &c, 0xFFFFFFFF, block[:])
	for i, v := range h {
		binary.LittleEndian.PutUint32(hash[4*i:], v)
	}
}