aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/tdewolff/minify/common.go
blob: fa3c91d2ea67153f211ad7e5a6311b86acede222 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
package minify // import "github.com/tdewolff/minify"

import (
	"bytes"
	"encoding/base64"
	"net/url"

	"github.com/tdewolff/parse"
	"github.com/tdewolff/parse/strconv"
)

// Epsilon is the closest number to zero that is not considered to be zero.
var Epsilon = 0.00001

// ContentType minifies a given mediatype by removing all whitespace.
func ContentType(b []byte) []byte {
	j := 0
	start := 0
	inString := false
	for i, c := range b {
		if !inString && parse.IsWhitespace(c) {
			if start != 0 {
				j += copy(b[j:], b[start:i])
			} else {
				j += i
			}
			start = i + 1
		} else if c == '"' {
			inString = !inString
		}
	}
	if start != 0 {
		j += copy(b[j:], b[start:])
		return parse.ToLower(b[:j])
	}
	return parse.ToLower(b)
}

// DataURI minifies a data URI and calls a minifier by the specified mediatype. Specifications: https://www.ietf.org/rfc/rfc2397.txt.
func DataURI(m *M, dataURI []byte) []byte {
	if mediatype, data, err := parse.DataURI(dataURI); err == nil {
		dataURI, _ = m.Bytes(string(mediatype), data)
		base64Len := len(";base64") + base64.StdEncoding.EncodedLen(len(dataURI))
		asciiLen := len(dataURI)
		for _, c := range dataURI {
			if 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || '0' <= c && c <= '9' || c == '-' || c == '_' || c == '.' || c == '~' || c == ' ' {
				asciiLen++
			} else {
				asciiLen += 2
			}
			if asciiLen > base64Len {
				break
			}
		}
		if asciiLen > base64Len {
			encoded := make([]byte, base64Len-len(";base64"))
			base64.StdEncoding.Encode(encoded, dataURI)
			dataURI = encoded
			mediatype = append(mediatype, []byte(";base64")...)
		} else {
			dataURI = []byte(url.QueryEscape(string(dataURI)))
			dataURI = bytes.Replace(dataURI, []byte("\""), []byte("\\\""), -1)
		}
		if len("text/plain") <= len(mediatype) && parse.EqualFold(mediatype[:len("text/plain")], []byte("text/plain")) {
			mediatype = mediatype[len("text/plain"):]
		}
		for i := 0; i+len(";charset=us-ascii") <= len(mediatype); i++ {
			// must start with semicolon and be followed by end of mediatype or semicolon
			if mediatype[i] == ';' && parse.EqualFold(mediatype[i+1:i+len(";charset=us-ascii")], []byte("charset=us-ascii")) && (i+len(";charset=us-ascii") >= len(mediatype) || mediatype[i+len(";charset=us-ascii")] == ';') {
				mediatype = append(mediatype[:i], mediatype[i+len(";charset=us-ascii"):]...)
				break
			}
		}
		dataURI = append(append(append([]byte("data:"), mediatype...), ','), dataURI...)
	}
	return dataURI
}

const MaxInt = int(^uint(0) >> 1)
const MinInt = -MaxInt - 1

// Number minifies a given byte slice containing a number (see parse.Number) and removes superfluous characters.
func Number(num []byte, prec int) []byte {
	// omit first + and register mantissa start and end, whether it's negative and the exponent
	neg := false
	start := 0
	dot := -1
	end := len(num)
	origExp := 0
	if 0 < end && (num[0] == '+' || num[0] == '-') {
		if num[0] == '-' {
			neg = true
		}
		start++
	}
	for i, c := range num[start:] {
		if c == '.' {
			dot = start + i
		} else if c == 'e' || c == 'E' {
			end = start + i
			i += start + 1
			if i < len(num) && num[i] == '+' {
				i++
			}
			if tmpOrigExp, n := strconv.ParseInt(num[i:]); n > 0 && tmpOrigExp >= int64(MinInt) && tmpOrigExp <= int64(MaxInt) {
				// range checks for when int is 32 bit
				origExp = int(tmpOrigExp)
			} else {
				return num
			}
			break
		}
	}
	if dot == -1 {
		dot = end
	}

	// trim leading zeros but leave at least one digit
	for start < end-1 && num[start] == '0' {
		start++
	}
	// trim trailing zeros
	i := end - 1
	for ; i > dot; i-- {
		if num[i] != '0' {
			end = i + 1
			break
		}
	}
	if i == dot {
		end = dot
		if start == end {
			num[start] = '0'
			return num[start : start+1]
		}
	} else if start == end-1 && num[start] == '0' {
		return num[start:end]
	}

	// n is the number of significant digits
	// normExp would be the exponent if it were normalised (0.1 <= f < 1)
	n := 0
	normExp := 0
	if dot == start {
		for i = dot + 1; i < end; i++ {
			if num[i] != '0' {
				n = end - i
				normExp = dot - i + 1
				break
			}
		}
	} else if dot == end {
		normExp = end - start
		for i = end - 1; i >= start; i-- {
			if num[i] != '0' {
				n = i + 1 - start
				end = i + 1
				break
			}
		}
	} else {
		n = end - start - 1
		normExp = dot - start
	}

	if origExp < 0 && (normExp < MinInt-origExp || normExp-n < MinInt-origExp) || origExp > 0 && (normExp > MaxInt-origExp || normExp-n > MaxInt-origExp) {
		return num
	}
	normExp += origExp

	// intExp would be the exponent if it were an integer
	intExp := normExp - n
	lenIntExp := 1
	if intExp <= -10 || intExp >= 10 {
		lenIntExp = strconv.LenInt(int64(intExp))
	}

	// there are three cases to consider when printing the number
	// case 1: without decimals and with an exponent (large numbers)
	// case 2: with decimals and without an exponent (around zero)
	// case 3: without decimals and with a negative exponent (small numbers)
	if normExp >= n {
		// case 1
		if dot < end {
			if dot == start {
				start = end - n
			} else {
				// TODO: copy the other part if shorter?
				copy(num[dot:], num[dot+1:end])
				end--
			}
		}
		if normExp >= n+3 {
			num[end] = 'e'
			end++
			for i := end + lenIntExp - 1; i >= end; i-- {
				num[i] = byte(intExp%10) + '0'
				intExp /= 10
			}
			end += lenIntExp
		} else if normExp == n+2 {
			num[end] = '0'
			num[end+1] = '0'
			end += 2
		} else if normExp == n+1 {
			num[end] = '0'
			end++
		}
	} else if normExp >= -lenIntExp-1 {
		// case 2
		zeroes := -normExp
		newDot := 0
		if zeroes > 0 {
			// dot placed at the front and add zeroes
			newDot = end - n - zeroes - 1
			if newDot != dot {
				d := start - newDot
				if d > 0 {
					if dot < end {
						// copy original digits behind the dot backwards
						copy(num[dot+1+d:], num[dot+1:end])
						if dot > start {
							// copy original digits before the dot backwards
							copy(num[start+d+1:], num[start:dot])
						}
					} else if dot > start {
						// copy original digits before the dot backwards
						copy(num[start+d:], num[start:dot])
					}
					newDot = start
					end += d
				} else {
					start += -d
				}
				num[newDot] = '.'
				for i := 0; i < zeroes; i++ {
					num[newDot+1+i] = '0'
				}
			}
		} else {
			// placed in the middle
			if dot == start {
				// TODO: try if placing at the end reduces copying
				// when there are zeroes after the dot
				dot = end - n - 1
				start = dot
			} else if dot >= end {
				// TODO: try if placing at the start reduces copying
				// when input has no dot in it
				dot = end
				end++
			}
			newDot = start + normExp
			if newDot > dot {
				// copy digits forwards
				copy(num[dot:], num[dot+1:newDot+1])
			} else if newDot < dot {
				// copy digits backwards
				copy(num[newDot+1:], num[newDot:dot])
			}
			num[newDot] = '.'
		}

		// apply precision
		dot = newDot
		if prec > -1 && dot+1+prec < end {
			end = dot + 1 + prec
			inc := num[end] >= '5'
			if inc || num[end-1] == '0' {
				for i := end - 1; i > start; i-- {
					if i == dot {
						end--
					} else if inc {
						if num[i] == '9' {
							if i > dot {
								end--
							} else {
								num[i] = '0'
							}
						} else {
							num[i]++
							inc = false
							break
						}
					} else if i > dot && num[i] == '0' {
						end--
					}
				}
			}
			if dot == start && end == start+1 {
				if inc {
					num[start] = '1'
				} else {
					num[start] = '0'
				}
			} else {
				if dot+1 == end {
					end--
				}
				if inc {
					if num[start] == '9' {
						num[start] = '0'
						copy(num[start+1:], num[start:end])
						end++
						num[start] = '1'
					} else {
						num[start]++
					}
				}
			}
		}
	} else {
		// case 3
		if dot < end {
			if dot == start {
				copy(num[start:], num[end-n:end])
				end = start + n
			} else {
				copy(num[dot:], num[dot+1:end])
				end--
			}
		}
		num[end] = 'e'
		num[end+1] = '-'
		end += 2
		intExp = -intExp
		for i := end + lenIntExp - 1; i >= end; i-- {
			num[i] = byte(intExp%10) + '0'
			intExp /= 10
		}
		end += lenIntExp
	}

	if neg {
		start--
		num[start] = '-'
	}
	return num[start:end]
}