aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/crypto/sha3/doc.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/sha3/doc.go')
-rw-r--r--vendor/golang.org/x/crypto/sha3/doc.go66
1 files changed, 0 insertions, 66 deletions
diff --git a/vendor/golang.org/x/crypto/sha3/doc.go b/vendor/golang.org/x/crypto/sha3/doc.go
deleted file mode 100644
index a0ee3ae..0000000
--- a/vendor/golang.org/x/crypto/sha3/doc.go
+++ /dev/null
@@ -1,66 +0,0 @@
-// Copyright 2014 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package sha3 implements the SHA-3 fixed-output-length hash functions and
-// the SHAKE variable-output-length hash functions defined by FIPS-202.
-//
-// Both types of hash function use the "sponge" construction and the Keccak
-// permutation. For a detailed specification see http://keccak.noekeon.org/
-//
-//
-// Guidance
-//
-// If you aren't sure what function you need, use SHAKE256 with at least 64
-// bytes of output. The SHAKE instances are faster than the SHA3 instances;
-// the latter have to allocate memory to conform to the hash.Hash interface.
-//
-// If you need a secret-key MAC (message authentication code), prepend the
-// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
-// output.
-//
-//
-// Security strengths
-//
-// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
-// strength against preimage attacks of x bits. Since they only produce "x"
-// bits of output, their collision-resistance is only "x/2" bits.
-//
-// The SHAKE-256 and -128 functions have a generic security strength of 256 and
-// 128 bits against all attacks, provided that at least 2x bits of their output
-// is used. Requesting more than 64 or 32 bytes of output, respectively, does
-// not increase the collision-resistance of the SHAKE functions.
-//
-//
-// The sponge construction
-//
-// A sponge builds a pseudo-random function from a public pseudo-random
-// permutation, by applying the permutation to a state of "rate + capacity"
-// bytes, but hiding "capacity" of the bytes.
-//
-// A sponge starts out with a zero state. To hash an input using a sponge, up
-// to "rate" bytes of the input are XORed into the sponge's state. The sponge
-// is then "full" and the permutation is applied to "empty" it. This process is
-// repeated until all the input has been "absorbed". The input is then padded.
-// The digest is "squeezed" from the sponge in the same way, except that output
-// output is copied out instead of input being XORed in.
-//
-// A sponge is parameterized by its generic security strength, which is equal
-// to half its capacity; capacity + rate is equal to the permutation's width.
-// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
-// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
-//
-//
-// Recommendations
-//
-// The SHAKE functions are recommended for most new uses. They can produce
-// output of arbitrary length. SHAKE256, with an output length of at least
-// 64 bytes, provides 256-bit security against all attacks. The Keccak team
-// recommends it for most applications upgrading from SHA2-512. (NIST chose a
-// much stronger, but much slower, sponge instance for SHA3-512.)
-//
-// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
-// They produce output of the same length, with the same security strengths
-// against all attacks. This means, in particular, that SHA3-256 only has
-// 128-bit collision resistance, because its output length is 32 bytes.
-package sha3 // import "golang.org/x/crypto/sha3"