aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/crypto/bn256
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/bn256')
-rw-r--r--vendor/golang.org/x/crypto/bn256/bn256.go416
-rw-r--r--vendor/golang.org/x/crypto/bn256/bn256_test.go304
-rw-r--r--vendor/golang.org/x/crypto/bn256/constants.go44
-rw-r--r--vendor/golang.org/x/crypto/bn256/curve.go287
-rw-r--r--vendor/golang.org/x/crypto/bn256/example_test.go43
-rw-r--r--vendor/golang.org/x/crypto/bn256/gfp12.go200
-rw-r--r--vendor/golang.org/x/crypto/bn256/gfp2.go219
-rw-r--r--vendor/golang.org/x/crypto/bn256/gfp6.go296
-rw-r--r--vendor/golang.org/x/crypto/bn256/optate.go395
-rw-r--r--vendor/golang.org/x/crypto/bn256/twist.go258
10 files changed, 0 insertions, 2462 deletions
diff --git a/vendor/golang.org/x/crypto/bn256/bn256.go b/vendor/golang.org/x/crypto/bn256/bn256.go
deleted file mode 100644
index ff27feb..0000000
--- a/vendor/golang.org/x/crypto/bn256/bn256.go
+++ /dev/null
@@ -1,416 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package bn256 implements a particular bilinear group.
-//
-// Bilinear groups are the basis of many of the new cryptographic protocols
-// that have been proposed over the past decade. They consist of a triplet of
-// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
-// (where gₓ is a generator of the respective group). That function is called
-// a pairing function.
-//
-// This package specifically implements the Optimal Ate pairing over a 256-bit
-// Barreto-Naehrig curve as described in
-// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
-// with the implementation described in that paper.
-//
-// (This package previously claimed to operate at a 128-bit security level.
-// However, recent improvements in attacks mean that is no longer true. See
-// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
-package bn256 // import "golang.org/x/crypto/bn256"
-
-import (
- "crypto/rand"
- "io"
- "math/big"
-)
-
-// BUG(agl): this implementation is not constant time.
-// TODO(agl): keep GF(p²) elements in Mongomery form.
-
-// G1 is an abstract cyclic group. The zero value is suitable for use as the
-// output of an operation, but cannot be used as an input.
-type G1 struct {
- p *curvePoint
-}
-
-// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
-func RandomG1(r io.Reader) (*big.Int, *G1, error) {
- var k *big.Int
- var err error
-
- for {
- k, err = rand.Int(r, Order)
- if err != nil {
- return nil, nil, err
- }
- if k.Sign() > 0 {
- break
- }
- }
-
- return k, new(G1).ScalarBaseMult(k), nil
-}
-
-func (e *G1) String() string {
- return "bn256.G1" + e.p.String()
-}
-
-// ScalarBaseMult sets e to g*k where g is the generator of the group and
-// then returns e.
-func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Mul(curveGen, k, new(bnPool))
- return e
-}
-
-// ScalarMult sets e to a*k and then returns e.
-func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Mul(a.p, k, new(bnPool))
- return e
-}
-
-// Add sets e to a+b and then returns e.
-// BUG(agl): this function is not complete: a==b fails.
-func (e *G1) Add(a, b *G1) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Add(a.p, b.p, new(bnPool))
- return e
-}
-
-// Neg sets e to -a and then returns e.
-func (e *G1) Neg(a *G1) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Negative(a.p)
- return e
-}
-
-// Marshal converts n to a byte slice.
-func (e *G1) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- if e.p.IsInfinity() {
- return make([]byte, numBytes*2)
- }
-
- e.p.MakeAffine(nil)
-
- xBytes := new(big.Int).Mod(e.p.x, p).Bytes()
- yBytes := new(big.Int).Mod(e.p.y, p).Bytes()
-
- ret := make([]byte, numBytes*2)
- copy(ret[1*numBytes-len(xBytes):], xBytes)
- copy(ret[2*numBytes-len(yBytes):], yBytes)
-
- return ret
-}
-
-// Unmarshal sets e to the result of converting the output of Marshal back into
-// a group element and then returns e.
-func (e *G1) Unmarshal(m []byte) (*G1, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- if len(m) != 2*numBytes {
- return nil, false
- }
-
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
-
- e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
-
- if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
- // This is the point at infinity.
- e.p.y.SetInt64(1)
- e.p.z.SetInt64(0)
- e.p.t.SetInt64(0)
- } else {
- e.p.z.SetInt64(1)
- e.p.t.SetInt64(1)
-
- if !e.p.IsOnCurve() {
- return nil, false
- }
- }
-
- return e, true
-}
-
-// G2 is an abstract cyclic group. The zero value is suitable for use as the
-// output of an operation, but cannot be used as an input.
-type G2 struct {
- p *twistPoint
-}
-
-// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
-func RandomG2(r io.Reader) (*big.Int, *G2, error) {
- var k *big.Int
- var err error
-
- for {
- k, err = rand.Int(r, Order)
- if err != nil {
- return nil, nil, err
- }
- if k.Sign() > 0 {
- break
- }
- }
-
- return k, new(G2).ScalarBaseMult(k), nil
-}
-
-func (e *G2) String() string {
- return "bn256.G2" + e.p.String()
-}
-
-// ScalarBaseMult sets e to g*k where g is the generator of the group and
-// then returns out.
-func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Mul(twistGen, k, new(bnPool))
- return e
-}
-
-// ScalarMult sets e to a*k and then returns e.
-func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Mul(a.p, k, new(bnPool))
- return e
-}
-
-// Add sets e to a+b and then returns e.
-// BUG(agl): this function is not complete: a==b fails.
-func (e *G2) Add(a, b *G2) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Add(a.p, b.p, new(bnPool))
- return e
-}
-
-// Marshal converts n into a byte slice.
-func (n *G2) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- if n.p.IsInfinity() {
- return make([]byte, numBytes*4)
- }
-
- n.p.MakeAffine(nil)
-
- xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
- xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
- yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
- yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
-
- ret := make([]byte, numBytes*4)
- copy(ret[1*numBytes-len(xxBytes):], xxBytes)
- copy(ret[2*numBytes-len(xyBytes):], xyBytes)
- copy(ret[3*numBytes-len(yxBytes):], yxBytes)
- copy(ret[4*numBytes-len(yyBytes):], yyBytes)
-
- return ret
-}
-
-// Unmarshal sets e to the result of converting the output of Marshal back into
-// a group element and then returns e.
-func (e *G2) Unmarshal(m []byte) (*G2, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- if len(m) != 4*numBytes {
- return nil, false
- }
-
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
-
- e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
- e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
- e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
-
- if e.p.x.x.Sign() == 0 &&
- e.p.x.y.Sign() == 0 &&
- e.p.y.x.Sign() == 0 &&
- e.p.y.y.Sign() == 0 {
- // This is the point at infinity.
- e.p.y.SetOne()
- e.p.z.SetZero()
- e.p.t.SetZero()
- } else {
- e.p.z.SetOne()
- e.p.t.SetOne()
-
- if !e.p.IsOnCurve() {
- return nil, false
- }
- }
-
- return e, true
-}
-
-// GT is an abstract cyclic group. The zero value is suitable for use as the
-// output of an operation, but cannot be used as an input.
-type GT struct {
- p *gfP12
-}
-
-func (g *GT) String() string {
- return "bn256.GT" + g.p.String()
-}
-
-// ScalarMult sets e to a*k and then returns e.
-func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Exp(a.p, k, new(bnPool))
- return e
-}
-
-// Add sets e to a+b and then returns e.
-func (e *GT) Add(a, b *GT) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Mul(a.p, b.p, new(bnPool))
- return e
-}
-
-// Neg sets e to -a and then returns e.
-func (e *GT) Neg(a *GT) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Invert(a.p, new(bnPool))
- return e
-}
-
-// Marshal converts n into a byte slice.
-func (n *GT) Marshal() []byte {
- n.p.Minimal()
-
- xxxBytes := n.p.x.x.x.Bytes()
- xxyBytes := n.p.x.x.y.Bytes()
- xyxBytes := n.p.x.y.x.Bytes()
- xyyBytes := n.p.x.y.y.Bytes()
- xzxBytes := n.p.x.z.x.Bytes()
- xzyBytes := n.p.x.z.y.Bytes()
- yxxBytes := n.p.y.x.x.Bytes()
- yxyBytes := n.p.y.x.y.Bytes()
- yyxBytes := n.p.y.y.x.Bytes()
- yyyBytes := n.p.y.y.y.Bytes()
- yzxBytes := n.p.y.z.x.Bytes()
- yzyBytes := n.p.y.z.y.Bytes()
-
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- ret := make([]byte, numBytes*12)
- copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
- copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
- copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
- copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
- copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
- copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
- copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
- copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
- copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
- copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
- copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
- copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
-
- return ret
-}
-
-// Unmarshal sets e to the result of converting the output of Marshal back into
-// a group element and then returns e.
-func (e *GT) Unmarshal(m []byte) (*GT, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
-
- if len(m) != 12*numBytes {
- return nil, false
- }
-
- if e.p == nil {
- e.p = newGFp12(nil)
- }
-
- e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
- e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
- e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
- e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
- e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
- e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
- e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
- e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
- e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
- e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
- e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
-
- return e, true
-}
-
-// Pair calculates an Optimal Ate pairing.
-func Pair(g1 *G1, g2 *G2) *GT {
- return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
-}
-
-// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
-// number of allocations made during processing.
-type bnPool struct {
- bns []*big.Int
- count int
-}
-
-func (pool *bnPool) Get() *big.Int {
- if pool == nil {
- return new(big.Int)
- }
-
- pool.count++
- l := len(pool.bns)
- if l == 0 {
- return new(big.Int)
- }
-
- bn := pool.bns[l-1]
- pool.bns = pool.bns[:l-1]
- return bn
-}
-
-func (pool *bnPool) Put(bn *big.Int) {
- if pool == nil {
- return
- }
- pool.bns = append(pool.bns, bn)
- pool.count--
-}
-
-func (pool *bnPool) Count() int {
- return pool.count
-}
diff --git a/vendor/golang.org/x/crypto/bn256/bn256_test.go b/vendor/golang.org/x/crypto/bn256/bn256_test.go
deleted file mode 100644
index 1cec388..0000000
--- a/vendor/golang.org/x/crypto/bn256/bn256_test.go
+++ /dev/null
@@ -1,304 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-import (
- "bytes"
- "crypto/rand"
- "math/big"
- "testing"
-)
-
-func TestGFp2Invert(t *testing.T) {
- pool := new(bnPool)
-
- a := newGFp2(pool)
- a.x.SetString("23423492374", 10)
- a.y.SetString("12934872398472394827398470", 10)
-
- inv := newGFp2(pool)
- inv.Invert(a, pool)
-
- b := newGFp2(pool).Mul(inv, a, pool)
- if b.x.Int64() != 0 || b.y.Int64() != 1 {
- t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
- }
-
- a.Put(pool)
- b.Put(pool)
- inv.Put(pool)
-
- if c := pool.Count(); c > 0 {
- t.Errorf("Pool count non-zero: %d\n", c)
- }
-}
-
-func isZero(n *big.Int) bool {
- return new(big.Int).Mod(n, p).Int64() == 0
-}
-
-func isOne(n *big.Int) bool {
- return new(big.Int).Mod(n, p).Int64() == 1
-}
-
-func TestGFp6Invert(t *testing.T) {
- pool := new(bnPool)
-
- a := newGFp6(pool)
- a.x.x.SetString("239487238491", 10)
- a.x.y.SetString("2356249827341", 10)
- a.y.x.SetString("082659782", 10)
- a.y.y.SetString("182703523765", 10)
- a.z.x.SetString("978236549263", 10)
- a.z.y.SetString("64893242", 10)
-
- inv := newGFp6(pool)
- inv.Invert(a, pool)
-
- b := newGFp6(pool).Mul(inv, a, pool)
- if !isZero(b.x.x) ||
- !isZero(b.x.y) ||
- !isZero(b.y.x) ||
- !isZero(b.y.y) ||
- !isZero(b.z.x) ||
- !isOne(b.z.y) {
- t.Fatalf("bad result for a^-1*a: %s", b)
- }
-
- a.Put(pool)
- b.Put(pool)
- inv.Put(pool)
-
- if c := pool.Count(); c > 0 {
- t.Errorf("Pool count non-zero: %d\n", c)
- }
-}
-
-func TestGFp12Invert(t *testing.T) {
- pool := new(bnPool)
-
- a := newGFp12(pool)
- a.x.x.x.SetString("239846234862342323958623", 10)
- a.x.x.y.SetString("2359862352529835623", 10)
- a.x.y.x.SetString("928836523", 10)
- a.x.y.y.SetString("9856234", 10)
- a.x.z.x.SetString("235635286", 10)
- a.x.z.y.SetString("5628392833", 10)
- a.y.x.x.SetString("252936598265329856238956532167968", 10)
- a.y.x.y.SetString("23596239865236954178968", 10)
- a.y.y.x.SetString("95421692834", 10)
- a.y.y.y.SetString("236548", 10)
- a.y.z.x.SetString("924523", 10)
- a.y.z.y.SetString("12954623", 10)
-
- inv := newGFp12(pool)
- inv.Invert(a, pool)
-
- b := newGFp12(pool).Mul(inv, a, pool)
- if !isZero(b.x.x.x) ||
- !isZero(b.x.x.y) ||
- !isZero(b.x.y.x) ||
- !isZero(b.x.y.y) ||
- !isZero(b.x.z.x) ||
- !isZero(b.x.z.y) ||
- !isZero(b.y.x.x) ||
- !isZero(b.y.x.y) ||
- !isZero(b.y.y.x) ||
- !isZero(b.y.y.y) ||
- !isZero(b.y.z.x) ||
- !isOne(b.y.z.y) {
- t.Fatalf("bad result for a^-1*a: %s", b)
- }
-
- a.Put(pool)
- b.Put(pool)
- inv.Put(pool)
-
- if c := pool.Count(); c > 0 {
- t.Errorf("Pool count non-zero: %d\n", c)
- }
-}
-
-func TestCurveImpl(t *testing.T) {
- pool := new(bnPool)
-
- g := &curvePoint{
- pool.Get().SetInt64(1),
- pool.Get().SetInt64(-2),
- pool.Get().SetInt64(1),
- pool.Get().SetInt64(0),
- }
-
- x := pool.Get().SetInt64(32498273234)
- X := newCurvePoint(pool).Mul(g, x, pool)
-
- y := pool.Get().SetInt64(98732423523)
- Y := newCurvePoint(pool).Mul(g, y, pool)
-
- s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
- s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
-
- if s1.x.Cmp(s2.x) != 0 ||
- s2.x.Cmp(s1.x) != 0 {
- t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
- }
-
- pool.Put(x)
- X.Put(pool)
- pool.Put(y)
- Y.Put(pool)
- s1.Put(pool)
- s2.Put(pool)
- g.Put(pool)
-
- if c := pool.Count(); c > 0 {
- t.Errorf("Pool count non-zero: %d\n", c)
- }
-}
-
-func TestOrderG1(t *testing.T) {
- g := new(G1).ScalarBaseMult(Order)
- if !g.p.IsInfinity() {
- t.Error("G1 has incorrect order")
- }
-
- one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
- g.Add(g, one)
- g.p.MakeAffine(nil)
- if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
- t.Errorf("1+0 != 1 in G1")
- }
-}
-
-func TestOrderG2(t *testing.T) {
- g := new(G2).ScalarBaseMult(Order)
- if !g.p.IsInfinity() {
- t.Error("G2 has incorrect order")
- }
-
- one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
- g.Add(g, one)
- g.p.MakeAffine(nil)
- if g.p.x.x.Cmp(one.p.x.x) != 0 ||
- g.p.x.y.Cmp(one.p.x.y) != 0 ||
- g.p.y.x.Cmp(one.p.y.x) != 0 ||
- g.p.y.y.Cmp(one.p.y.y) != 0 {
- t.Errorf("1+0 != 1 in G2")
- }
-}
-
-func TestOrderGT(t *testing.T) {
- gt := Pair(&G1{curveGen}, &G2{twistGen})
- g := new(GT).ScalarMult(gt, Order)
- if !g.p.IsOne() {
- t.Error("GT has incorrect order")
- }
-}
-
-func TestBilinearity(t *testing.T) {
- for i := 0; i < 2; i++ {
- a, p1, _ := RandomG1(rand.Reader)
- b, p2, _ := RandomG2(rand.Reader)
- e1 := Pair(p1, p2)
-
- e2 := Pair(&G1{curveGen}, &G2{twistGen})
- e2.ScalarMult(e2, a)
- e2.ScalarMult(e2, b)
-
- minusE2 := new(GT).Neg(e2)
- e1.Add(e1, minusE2)
-
- if !e1.p.IsOne() {
- t.Fatalf("bad pairing result: %s", e1)
- }
- }
-}
-
-func TestG1Marshal(t *testing.T) {
- g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
- form := g.Marshal()
- _, ok := new(G1).Unmarshal(form)
- if !ok {
- t.Fatalf("failed to unmarshal")
- }
-
- g.ScalarBaseMult(Order)
- form = g.Marshal()
- g2, ok := new(G1).Unmarshal(form)
- if !ok {
- t.Fatalf("failed to unmarshal ∞")
- }
- if !g2.p.IsInfinity() {
- t.Fatalf("∞ unmarshaled incorrectly")
- }
-}
-
-func TestG2Marshal(t *testing.T) {
- g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
- form := g.Marshal()
- _, ok := new(G2).Unmarshal(form)
- if !ok {
- t.Fatalf("failed to unmarshal")
- }
-
- g.ScalarBaseMult(Order)
- form = g.Marshal()
- g2, ok := new(G2).Unmarshal(form)
- if !ok {
- t.Fatalf("failed to unmarshal ∞")
- }
- if !g2.p.IsInfinity() {
- t.Fatalf("∞ unmarshaled incorrectly")
- }
-}
-
-func TestG1Identity(t *testing.T) {
- g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
- if !g.p.IsInfinity() {
- t.Error("failure")
- }
-}
-
-func TestG2Identity(t *testing.T) {
- g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
- if !g.p.IsInfinity() {
- t.Error("failure")
- }
-}
-
-func TestTripartiteDiffieHellman(t *testing.T) {
- a, _ := rand.Int(rand.Reader, Order)
- b, _ := rand.Int(rand.Reader, Order)
- c, _ := rand.Int(rand.Reader, Order)
-
- pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
- qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
- pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
- qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
- pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
- qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
-
- k1 := Pair(pb, qc)
- k1.ScalarMult(k1, a)
- k1Bytes := k1.Marshal()
-
- k2 := Pair(pc, qa)
- k2.ScalarMult(k2, b)
- k2Bytes := k2.Marshal()
-
- k3 := Pair(pa, qb)
- k3.ScalarMult(k3, c)
- k3Bytes := k3.Marshal()
-
- if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
- t.Errorf("keys didn't agree")
- }
-}
-
-func BenchmarkPairing(b *testing.B) {
- for i := 0; i < b.N; i++ {
- Pair(&G1{curveGen}, &G2{twistGen})
- }
-}
diff --git a/vendor/golang.org/x/crypto/bn256/constants.go b/vendor/golang.org/x/crypto/bn256/constants.go
deleted file mode 100644
index 1ccefc4..0000000
--- a/vendor/golang.org/x/crypto/bn256/constants.go
+++ /dev/null
@@ -1,44 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-import (
- "math/big"
-)
-
-func bigFromBase10(s string) *big.Int {
- n, _ := new(big.Int).SetString(s, 10)
- return n
-}
-
-// u is the BN parameter that determines the prime: 1868033³.
-var u = bigFromBase10("6518589491078791937")
-
-// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
-var p = bigFromBase10("65000549695646603732796438742359905742825358107623003571877145026864184071783")
-
-// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
-var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")
-
-// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+3.
-var xiToPMinus1Over6 = &gfP2{bigFromBase10("8669379979083712429711189836753509758585994370025260553045152614783263110636"), bigFromBase10("19998038925833620163537568958541907098007303196759855091367510456613536016040")}
-
-// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+3.
-var xiToPMinus1Over3 = &gfP2{bigFromBase10("26098034838977895781559542626833399156321265654106457577426020397262786167059"), bigFromBase10("15931493369629630809226283458085260090334794394361662678240713231519278691715")}
-
-// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+3.
-var xiToPMinus1Over2 = &gfP2{bigFromBase10("50997318142241922852281555961173165965672272825141804376761836765206060036244"), bigFromBase10("38665955945962842195025998234511023902832543644254935982879660597356748036009")}
-
-// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+3.
-var xiToPSquaredMinus1Over3 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437752")
-
-// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+3 (a cubic root of unity, mod p).
-var xiTo2PSquaredMinus2Over3 = bigFromBase10("4985783334309134261147736404674766913742361673560802634030")
-
-// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+3 (a cubic root of -1, mod p).
-var xiToPSquaredMinus1Over6 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437753")
-
-// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+3.
-var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19885131339612776214803633203834694332692106372356013117629940868870585019582"), bigFromBase10("21645619881471562101905880913352894726728173167203616652430647841922248593627")}
diff --git a/vendor/golang.org/x/crypto/bn256/curve.go b/vendor/golang.org/x/crypto/bn256/curve.go
deleted file mode 100644
index 63c052b..0000000
--- a/vendor/golang.org/x/crypto/bn256/curve.go
+++ /dev/null
@@ -1,287 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-import (
- "math/big"
-)
-
-// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
-// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
-// GF(p).
-type curvePoint struct {
- x, y, z, t *big.Int
-}
-
-var curveB = new(big.Int).SetInt64(3)
-
-// curveGen is the generator of G₁.
-var curveGen = &curvePoint{
- new(big.Int).SetInt64(1),
- new(big.Int).SetInt64(-2),
- new(big.Int).SetInt64(1),
- new(big.Int).SetInt64(1),
-}
-
-func newCurvePoint(pool *bnPool) *curvePoint {
- return &curvePoint{
- pool.Get(),
- pool.Get(),
- pool.Get(),
- pool.Get(),
- }
-}
-
-func (c *curvePoint) String() string {
- c.MakeAffine(new(bnPool))
- return "(" + c.x.String() + ", " + c.y.String() + ")"
-}
-
-func (c *curvePoint) Put(pool *bnPool) {
- pool.Put(c.x)
- pool.Put(c.y)
- pool.Put(c.z)
- pool.Put(c.t)
-}
-
-func (c *curvePoint) Set(a *curvePoint) {
- c.x.Set(a.x)
- c.y.Set(a.y)
- c.z.Set(a.z)
- c.t.Set(a.t)
-}
-
-// IsOnCurve returns true iff c is on the curve where c must be in affine form.
-func (c *curvePoint) IsOnCurve() bool {
- yy := new(big.Int).Mul(c.y, c.y)
- xxx := new(big.Int).Mul(c.x, c.x)
- xxx.Mul(xxx, c.x)
- yy.Sub(yy, xxx)
- yy.Sub(yy, curveB)
- if yy.Sign() < 0 || yy.Cmp(p) >= 0 {
- yy.Mod(yy, p)
- }
- return yy.Sign() == 0
-}
-
-func (c *curvePoint) SetInfinity() {
- c.z.SetInt64(0)
-}
-
-func (c *curvePoint) IsInfinity() bool {
- return c.z.Sign() == 0
-}
-
-func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
- if a.IsInfinity() {
- c.Set(b)
- return
- }
- if b.IsInfinity() {
- c.Set(a)
- return
- }
-
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
-
- // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
- // by [u1:s1:z1·z2] and [u2:s2:z1·z2]
- // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
- z1z1 := pool.Get().Mul(a.z, a.z)
- z1z1.Mod(z1z1, p)
- z2z2 := pool.Get().Mul(b.z, b.z)
- z2z2.Mod(z2z2, p)
- u1 := pool.Get().Mul(a.x, z2z2)
- u1.Mod(u1, p)
- u2 := pool.Get().Mul(b.x, z1z1)
- u2.Mod(u2, p)
-
- t := pool.Get().Mul(b.z, z2z2)
- t.Mod(t, p)
- s1 := pool.Get().Mul(a.y, t)
- s1.Mod(s1, p)
-
- t.Mul(a.z, z1z1)
- t.Mod(t, p)
- s2 := pool.Get().Mul(b.y, t)
- s2.Mod(s2, p)
-
- // Compute x = (2h)²(s²-u1-u2)
- // where s = (s2-s1)/(u2-u1) is the slope of the line through
- // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
- // This is also:
- // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
- // = r² - j - 2v
- // with the notations below.
- h := pool.Get().Sub(u2, u1)
- xEqual := h.Sign() == 0
-
- t.Add(h, h)
- // i = 4h²
- i := pool.Get().Mul(t, t)
- i.Mod(i, p)
- // j = 4h³
- j := pool.Get().Mul(h, i)
- j.Mod(j, p)
-
- t.Sub(s2, s1)
- yEqual := t.Sign() == 0
- if xEqual && yEqual {
- c.Double(a, pool)
- return
- }
- r := pool.Get().Add(t, t)
-
- v := pool.Get().Mul(u1, i)
- v.Mod(v, p)
-
- // t4 = 4(s2-s1)²
- t4 := pool.Get().Mul(r, r)
- t4.Mod(t4, p)
- t.Add(v, v)
- t6 := pool.Get().Sub(t4, j)
- c.x.Sub(t6, t)
-
- // Set y = -(2h)³(s1 + s*(x/4h²-u1))
- // This is also
- // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
- t.Sub(v, c.x) // t7
- t4.Mul(s1, j) // t8
- t4.Mod(t4, p)
- t6.Add(t4, t4) // t9
- t4.Mul(r, t) // t10
- t4.Mod(t4, p)
- c.y.Sub(t4, t6)
-
- // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
- t.Add(a.z, b.z) // t11
- t4.Mul(t, t) // t12
- t4.Mod(t4, p)
- t.Sub(t4, z1z1) // t13
- t4.Sub(t, z2z2) // t14
- c.z.Mul(t4, h)
- c.z.Mod(c.z, p)
-
- pool.Put(z1z1)
- pool.Put(z2z2)
- pool.Put(u1)
- pool.Put(u2)
- pool.Put(t)
- pool.Put(s1)
- pool.Put(s2)
- pool.Put(h)
- pool.Put(i)
- pool.Put(j)
- pool.Put(r)
- pool.Put(v)
- pool.Put(t4)
- pool.Put(t6)
-}
-
-func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
- A := pool.Get().Mul(a.x, a.x)
- A.Mod(A, p)
- B := pool.Get().Mul(a.y, a.y)
- B.Mod(B, p)
- C := pool.Get().Mul(B, B)
- C.Mod(C, p)
-
- t := pool.Get().Add(a.x, B)
- t2 := pool.Get().Mul(t, t)
- t2.Mod(t2, p)
- t.Sub(t2, A)
- t2.Sub(t, C)
- d := pool.Get().Add(t2, t2)
- t.Add(A, A)
- e := pool.Get().Add(t, A)
- f := pool.Get().Mul(e, e)
- f.Mod(f, p)
-
- t.Add(d, d)
- c.x.Sub(f, t)
-
- t.Add(C, C)
- t2.Add(t, t)
- t.Add(t2, t2)
- c.y.Sub(d, c.x)
- t2.Mul(e, c.y)
- t2.Mod(t2, p)
- c.y.Sub(t2, t)
-
- t.Mul(a.y, a.z)
- t.Mod(t, p)
- c.z.Add(t, t)
-
- pool.Put(A)
- pool.Put(B)
- pool.Put(C)
- pool.Put(t)
- pool.Put(t2)
- pool.Put(d)
- pool.Put(e)
- pool.Put(f)
-}
-
-func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
- sum := newCurvePoint(pool)
- sum.SetInfinity()
- t := newCurvePoint(pool)
-
- for i := scalar.BitLen(); i >= 0; i-- {
- t.Double(sum, pool)
- if scalar.Bit(i) != 0 {
- sum.Add(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
-
- c.Set(sum)
- sum.Put(pool)
- t.Put(pool)
- return c
-}
-
-// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
-// c to 0 : 1 : 0.
-func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
- if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
- return c
- }
- if c.IsInfinity() {
- c.x.SetInt64(0)
- c.y.SetInt64(1)
- c.z.SetInt64(0)
- c.t.SetInt64(0)
- return c
- }
-
- zInv := pool.Get().ModInverse(c.z, p)
- t := pool.Get().Mul(c.y, zInv)
- t.Mod(t, p)
- zInv2 := pool.Get().Mul(zInv, zInv)
- zInv2.Mod(zInv2, p)
- c.y.Mul(t, zInv2)
- c.y.Mod(c.y, p)
- t.Mul(c.x, zInv2)
- t.Mod(t, p)
- c.x.Set(t)
- c.z.SetInt64(1)
- c.t.SetInt64(1)
-
- pool.Put(zInv)
- pool.Put(t)
- pool.Put(zInv2)
-
- return c
-}
-
-func (c *curvePoint) Negative(a *curvePoint) {
- c.x.Set(a.x)
- c.y.Neg(a.y)
- c.z.Set(a.z)
- c.t.SetInt64(0)
-}
diff --git a/vendor/golang.org/x/crypto/bn256/example_test.go b/vendor/golang.org/x/crypto/bn256/example_test.go
deleted file mode 100644
index b2d1980..0000000
--- a/vendor/golang.org/x/crypto/bn256/example_test.go
+++ /dev/null
@@ -1,43 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-import (
- "crypto/rand"
-)
-
-func ExamplePair() {
- // This implements the tripartite Diffie-Hellman algorithm from "A One
- // Round Protocol for Tripartite Diffie-Hellman", A. Joux.
- // http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
-
- // Each of three parties, a, b and c, generate a private value.
- a, _ := rand.Int(rand.Reader, Order)
- b, _ := rand.Int(rand.Reader, Order)
- c, _ := rand.Int(rand.Reader, Order)
-
- // Then each party calculates g₁ and g₂ times their private value.
- pa := new(G1).ScalarBaseMult(a)
- qa := new(G2).ScalarBaseMult(a)
-
- pb := new(G1).ScalarBaseMult(b)
- qb := new(G2).ScalarBaseMult(b)
-
- pc := new(G1).ScalarBaseMult(c)
- qc := new(G2).ScalarBaseMult(c)
-
- // Now each party exchanges its public values with the other two and
- // all parties can calculate the shared key.
- k1 := Pair(pb, qc)
- k1.ScalarMult(k1, a)
-
- k2 := Pair(pc, qa)
- k2.ScalarMult(k2, b)
-
- k3 := Pair(pa, qb)
- k3.ScalarMult(k3, c)
-
- // k1, k2 and k3 will all be equal.
-}
diff --git a/vendor/golang.org/x/crypto/bn256/gfp12.go b/vendor/golang.org/x/crypto/bn256/gfp12.go
deleted file mode 100644
index f084edd..0000000
--- a/vendor/golang.org/x/crypto/bn256/gfp12.go
+++ /dev/null
@@ -1,200 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-// For details of the algorithms used, see "Multiplication and Squaring on
-// Pairing-Friendly Fields, Devegili et al.
-// http://eprint.iacr.org/2006/471.pdf.
-
-import (
- "math/big"
-)
-
-// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
-// where ω²=τ.
-type gfP12 struct {
- x, y *gfP6 // value is xω + y
-}
-
-func newGFp12(pool *bnPool) *gfP12 {
- return &gfP12{newGFp6(pool), newGFp6(pool)}
-}
-
-func (e *gfP12) String() string {
- return "(" + e.x.String() + "," + e.y.String() + ")"
-}
-
-func (e *gfP12) Put(pool *bnPool) {
- e.x.Put(pool)
- e.y.Put(pool)
-}
-
-func (e *gfP12) Set(a *gfP12) *gfP12 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- return e
-}
-
-func (e *gfP12) SetZero() *gfP12 {
- e.x.SetZero()
- e.y.SetZero()
- return e
-}
-
-func (e *gfP12) SetOne() *gfP12 {
- e.x.SetZero()
- e.y.SetOne()
- return e
-}
-
-func (e *gfP12) Minimal() {
- e.x.Minimal()
- e.y.Minimal()
-}
-
-func (e *gfP12) IsZero() bool {
- e.Minimal()
- return e.x.IsZero() && e.y.IsZero()
-}
-
-func (e *gfP12) IsOne() bool {
- e.Minimal()
- return e.x.IsZero() && e.y.IsOne()
-}
-
-func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
- e.x.Negative(a.x)
- e.y.Set(a.y)
- return a
-}
-
-func (e *gfP12) Negative(a *gfP12) *gfP12 {
- e.x.Negative(a.x)
- e.y.Negative(a.y)
- return e
-}
-
-// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
-func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
- e.x.Frobenius(a.x, pool)
- e.y.Frobenius(a.y, pool)
- e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
- return e
-}
-
-// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
-func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
- e.x.FrobeniusP2(a.x)
- e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
- e.y.FrobeniusP2(a.y)
- return e
-}
-
-func (e *gfP12) Add(a, b *gfP12) *gfP12 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- return e
-}
-
-func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- return e
-}
-
-func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
- tx := newGFp6(pool)
- tx.Mul(a.x, b.y, pool)
- t := newGFp6(pool)
- t.Mul(b.x, a.y, pool)
- tx.Add(tx, t)
-
- ty := newGFp6(pool)
- ty.Mul(a.y, b.y, pool)
- t.Mul(a.x, b.x, pool)
- t.MulTau(t, pool)
- e.y.Add(ty, t)
- e.x.Set(tx)
-
- tx.Put(pool)
- ty.Put(pool)
- t.Put(pool)
- return e
-}
-
-func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
- e.x.Mul(e.x, b, pool)
- e.y.Mul(e.y, b, pool)
- return e
-}
-
-func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
- sum := newGFp12(pool)
- sum.SetOne()
- t := newGFp12(pool)
-
- for i := power.BitLen() - 1; i >= 0; i-- {
- t.Square(sum, pool)
- if power.Bit(i) != 0 {
- sum.Mul(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
-
- c.Set(sum)
-
- sum.Put(pool)
- t.Put(pool)
-
- return c
-}
-
-func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
- // Complex squaring algorithm
- v0 := newGFp6(pool)
- v0.Mul(a.x, a.y, pool)
-
- t := newGFp6(pool)
- t.MulTau(a.x, pool)
- t.Add(a.y, t)
- ty := newGFp6(pool)
- ty.Add(a.x, a.y)
- ty.Mul(ty, t, pool)
- ty.Sub(ty, v0)
- t.MulTau(v0, pool)
- ty.Sub(ty, t)
-
- e.y.Set(ty)
- e.x.Double(v0)
-
- v0.Put(pool)
- t.Put(pool)
- ty.Put(pool)
-
- return e
-}
-
-func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
- t1 := newGFp6(pool)
- t2 := newGFp6(pool)
-
- t1.Square(a.x, pool)
- t2.Square(a.y, pool)
- t1.MulTau(t1, pool)
- t1.Sub(t2, t1)
- t2.Invert(t1, pool)
-
- e.x.Negative(a.x)
- e.y.Set(a.y)
- e.MulScalar(e, t2, pool)
-
- t1.Put(pool)
- t2.Put(pool)
-
- return e
-}
diff --git a/vendor/golang.org/x/crypto/bn256/gfp2.go b/vendor/golang.org/x/crypto/bn256/gfp2.go
deleted file mode 100644
index 97f3f1f..0000000
--- a/vendor/golang.org/x/crypto/bn256/gfp2.go
+++ /dev/null
@@ -1,219 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-// For details of the algorithms used, see "Multiplication and Squaring on
-// Pairing-Friendly Fields, Devegili et al.
-// http://eprint.iacr.org/2006/471.pdf.
-
-import (
- "math/big"
-)
-
-// gfP2 implements a field of size p² as a quadratic extension of the base
-// field where i²=-1.
-type gfP2 struct {
- x, y *big.Int // value is xi+y.
-}
-
-func newGFp2(pool *bnPool) *gfP2 {
- return &gfP2{pool.Get(), pool.Get()}
-}
-
-func (e *gfP2) String() string {
- x := new(big.Int).Mod(e.x, p)
- y := new(big.Int).Mod(e.y, p)
- return "(" + x.String() + "," + y.String() + ")"
-}
-
-func (e *gfP2) Put(pool *bnPool) {
- pool.Put(e.x)
- pool.Put(e.y)
-}
-
-func (e *gfP2) Set(a *gfP2) *gfP2 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- return e
-}
-
-func (e *gfP2) SetZero() *gfP2 {
- e.x.SetInt64(0)
- e.y.SetInt64(0)
- return e
-}
-
-func (e *gfP2) SetOne() *gfP2 {
- e.x.SetInt64(0)
- e.y.SetInt64(1)
- return e
-}
-
-func (e *gfP2) Minimal() {
- if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 {
- e.x.Mod(e.x, p)
- }
- if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 {
- e.y.Mod(e.y, p)
- }
-}
-
-func (e *gfP2) IsZero() bool {
- return e.x.Sign() == 0 && e.y.Sign() == 0
-}
-
-func (e *gfP2) IsOne() bool {
- if e.x.Sign() != 0 {
- return false
- }
- words := e.y.Bits()
- return len(words) == 1 && words[0] == 1
-}
-
-func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
- e.y.Set(a.y)
- e.x.Neg(a.x)
- return e
-}
-
-func (e *gfP2) Negative(a *gfP2) *gfP2 {
- e.x.Neg(a.x)
- e.y.Neg(a.y)
- return e
-}
-
-func (e *gfP2) Add(a, b *gfP2) *gfP2 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- return e
-}
-
-func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- return e
-}
-
-func (e *gfP2) Double(a *gfP2) *gfP2 {
- e.x.Lsh(a.x, 1)
- e.y.Lsh(a.y, 1)
- return e
-}
-
-func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
- sum := newGFp2(pool)
- sum.SetOne()
- t := newGFp2(pool)
-
- for i := power.BitLen() - 1; i >= 0; i-- {
- t.Square(sum, pool)
- if power.Bit(i) != 0 {
- sum.Mul(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
-
- c.Set(sum)
-
- sum.Put(pool)
- t.Put(pool)
-
- return c
-}
-
-// See "Multiplication and Squaring in Pairing-Friendly Fields",
-// http://eprint.iacr.org/2006/471.pdf
-func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
- tx := pool.Get().Mul(a.x, b.y)
- t := pool.Get().Mul(b.x, a.y)
- tx.Add(tx, t)
- tx.Mod(tx, p)
-
- ty := pool.Get().Mul(a.y, b.y)
- t.Mul(a.x, b.x)
- ty.Sub(ty, t)
- e.y.Mod(ty, p)
- e.x.Set(tx)
-
- pool.Put(tx)
- pool.Put(ty)
- pool.Put(t)
-
- return e
-}
-
-func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
- e.x.Mul(a.x, b)
- e.y.Mul(a.y, b)
- return e
-}
-
-// MulXi sets e=ξa where ξ=i+3 and then returns e.
-func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
- // (xi+y)(i+3) = (3x+y)i+(3y-x)
- tx := pool.Get().Lsh(a.x, 1)
- tx.Add(tx, a.x)
- tx.Add(tx, a.y)
-
- ty := pool.Get().Lsh(a.y, 1)
- ty.Add(ty, a.y)
- ty.Sub(ty, a.x)
-
- e.x.Set(tx)
- e.y.Set(ty)
-
- pool.Put(tx)
- pool.Put(ty)
-
- return e
-}
-
-func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
- // Complex squaring algorithm:
- // (xi+b)² = (x+y)(y-x) + 2*i*x*y
- t1 := pool.Get().Sub(a.y, a.x)
- t2 := pool.Get().Add(a.x, a.y)
- ty := pool.Get().Mul(t1, t2)
- ty.Mod(ty, p)
-
- t1.Mul(a.x, a.y)
- t1.Lsh(t1, 1)
-
- e.x.Mod(t1, p)
- e.y.Set(ty)
-
- pool.Put(t1)
- pool.Put(t2)
- pool.Put(ty)
-
- return e
-}
-
-func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
- t := pool.Get()
- t.Mul(a.y, a.y)
- t2 := pool.Get()
- t2.Mul(a.x, a.x)
- t.Add(t, t2)
-
- inv := pool.Get()
- inv.ModInverse(t, p)
-
- e.x.Neg(a.x)
- e.x.Mul(e.x, inv)
- e.x.Mod(e.x, p)
-
- e.y.Mul(a.y, inv)
- e.y.Mod(e.y, p)
-
- pool.Put(t)
- pool.Put(t2)
- pool.Put(inv)
-
- return e
-}
diff --git a/vendor/golang.org/x/crypto/bn256/gfp6.go b/vendor/golang.org/x/crypto/bn256/gfp6.go
deleted file mode 100644
index f98ae78..0000000
--- a/vendor/golang.org/x/crypto/bn256/gfp6.go
+++ /dev/null
@@ -1,296 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-// For details of the algorithms used, see "Multiplication and Squaring on
-// Pairing-Friendly Fields, Devegili et al.
-// http://eprint.iacr.org/2006/471.pdf.
-
-import (
- "math/big"
-)
-
-// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
-// and ξ=i+3.
-type gfP6 struct {
- x, y, z *gfP2 // value is xτ² + yτ + z
-}
-
-func newGFp6(pool *bnPool) *gfP6 {
- return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
-}
-
-func (e *gfP6) String() string {
- return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
-}
-
-func (e *gfP6) Put(pool *bnPool) {
- e.x.Put(pool)
- e.y.Put(pool)
- e.z.Put(pool)
-}
-
-func (e *gfP6) Set(a *gfP6) *gfP6 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- e.z.Set(a.z)
- return e
-}
-
-func (e *gfP6) SetZero() *gfP6 {
- e.x.SetZero()
- e.y.SetZero()
- e.z.SetZero()
- return e
-}
-
-func (e *gfP6) SetOne() *gfP6 {
- e.x.SetZero()
- e.y.SetZero()
- e.z.SetOne()
- return e
-}
-
-func (e *gfP6) Minimal() {
- e.x.Minimal()
- e.y.Minimal()
- e.z.Minimal()
-}
-
-func (e *gfP6) IsZero() bool {
- return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
-}
-
-func (e *gfP6) IsOne() bool {
- return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
-}
-
-func (e *gfP6) Negative(a *gfP6) *gfP6 {
- e.x.Negative(a.x)
- e.y.Negative(a.y)
- e.z.Negative(a.z)
- return e
-}
-
-func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
- e.x.Conjugate(a.x)
- e.y.Conjugate(a.y)
- e.z.Conjugate(a.z)
-
- e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
- e.y.Mul(e.y, xiToPMinus1Over3, pool)
- return e
-}
-
-// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
-func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
- // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
- e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
- // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
- e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
- e.z.Set(a.z)
- return e
-}
-
-func (e *gfP6) Add(a, b *gfP6) *gfP6 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- e.z.Add(a.z, b.z)
- return e
-}
-
-func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- e.z.Sub(a.z, b.z)
- return e
-}
-
-func (e *gfP6) Double(a *gfP6) *gfP6 {
- e.x.Double(a.x)
- e.y.Double(a.y)
- e.z.Double(a.z)
- return e
-}
-
-func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
- // "Multiplication and Squaring on Pairing-Friendly Fields"
- // Section 4, Karatsuba method.
- // http://eprint.iacr.org/2006/471.pdf
-
- v0 := newGFp2(pool)
- v0.Mul(a.z, b.z, pool)
- v1 := newGFp2(pool)
- v1.Mul(a.y, b.y, pool)
- v2 := newGFp2(pool)
- v2.Mul(a.x, b.x, pool)
-
- t0 := newGFp2(pool)
- t0.Add(a.x, a.y)
- t1 := newGFp2(pool)
- t1.Add(b.x, b.y)
- tz := newGFp2(pool)
- tz.Mul(t0, t1, pool)
-
- tz.Sub(tz, v1)
- tz.Sub(tz, v2)
- tz.MulXi(tz, pool)
- tz.Add(tz, v0)
-
- t0.Add(a.y, a.z)
- t1.Add(b.y, b.z)
- ty := newGFp2(pool)
- ty.Mul(t0, t1, pool)
- ty.Sub(ty, v0)
- ty.Sub(ty, v1)
- t0.MulXi(v2, pool)
- ty.Add(ty, t0)
-
- t0.Add(a.x, a.z)
- t1.Add(b.x, b.z)
- tx := newGFp2(pool)
- tx.Mul(t0, t1, pool)
- tx.Sub(tx, v0)
- tx.Add(tx, v1)
- tx.Sub(tx, v2)
-
- e.x.Set(tx)
- e.y.Set(ty)
- e.z.Set(tz)
-
- t0.Put(pool)
- t1.Put(pool)
- tx.Put(pool)
- ty.Put(pool)
- tz.Put(pool)
- v0.Put(pool)
- v1.Put(pool)
- v2.Put(pool)
- return e
-}
-
-func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
- e.x.Mul(a.x, b, pool)
- e.y.Mul(a.y, b, pool)
- e.z.Mul(a.z, b, pool)
- return e
-}
-
-func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
- e.x.MulScalar(a.x, b)
- e.y.MulScalar(a.y, b)
- e.z.MulScalar(a.z, b)
- return e
-}
-
-// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
-func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
- tz := newGFp2(pool)
- tz.MulXi(a.x, pool)
- ty := newGFp2(pool)
- ty.Set(a.y)
- e.y.Set(a.z)
- e.x.Set(ty)
- e.z.Set(tz)
- tz.Put(pool)
- ty.Put(pool)
-}
-
-func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
- v0 := newGFp2(pool).Square(a.z, pool)
- v1 := newGFp2(pool).Square(a.y, pool)
- v2 := newGFp2(pool).Square(a.x, pool)
-
- c0 := newGFp2(pool).Add(a.x, a.y)
- c0.Square(c0, pool)
- c0.Sub(c0, v1)
- c0.Sub(c0, v2)
- c0.MulXi(c0, pool)
- c0.Add(c0, v0)
-
- c1 := newGFp2(pool).Add(a.y, a.z)
- c1.Square(c1, pool)
- c1.Sub(c1, v0)
- c1.Sub(c1, v1)
- xiV2 := newGFp2(pool).MulXi(v2, pool)
- c1.Add(c1, xiV2)
-
- c2 := newGFp2(pool).Add(a.x, a.z)
- c2.Square(c2, pool)
- c2.Sub(c2, v0)
- c2.Add(c2, v1)
- c2.Sub(c2, v2)
-
- e.x.Set(c2)
- e.y.Set(c1)
- e.z.Set(c0)
-
- v0.Put(pool)
- v1.Put(pool)
- v2.Put(pool)
- c0.Put(pool)
- c1.Put(pool)
- c2.Put(pool)
- xiV2.Put(pool)
-
- return e
-}
-
-func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
-
- // Here we can give a short explanation of how it works: let j be a cubic root of
- // unity in GF(p²) so that 1+j+j²=0.
- // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
- // = (xτ² + yτ + z)(Cτ²+Bτ+A)
- // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
- //
- // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
- // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
- //
- // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
- t1 := newGFp2(pool)
-
- A := newGFp2(pool)
- A.Square(a.z, pool)
- t1.Mul(a.x, a.y, pool)
- t1.MulXi(t1, pool)
- A.Sub(A, t1)
-
- B := newGFp2(pool)
- B.Square(a.x, pool)
- B.MulXi(B, pool)
- t1.Mul(a.y, a.z, pool)
- B.Sub(B, t1)
-
- C := newGFp2(pool)
- C.Square(a.y, pool)
- t1.Mul(a.x, a.z, pool)
- C.Sub(C, t1)
-
- F := newGFp2(pool)
- F.Mul(C, a.y, pool)
- F.MulXi(F, pool)
- t1.Mul(A, a.z, pool)
- F.Add(F, t1)
- t1.Mul(B, a.x, pool)
- t1.MulXi(t1, pool)
- F.Add(F, t1)
-
- F.Invert(F, pool)
-
- e.x.Mul(C, F, pool)
- e.y.Mul(B, F, pool)
- e.z.Mul(A, F, pool)
-
- t1.Put(pool)
- A.Put(pool)
- B.Put(pool)
- C.Put(pool)
- F.Put(pool)
-
- return e
-}
diff --git a/vendor/golang.org/x/crypto/bn256/optate.go b/vendor/golang.org/x/crypto/bn256/optate.go
deleted file mode 100644
index 7ae0746..0000000
--- a/vendor/golang.org/x/crypto/bn256/optate.go
+++ /dev/null
@@ -1,395 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the mixed addition algorithm from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
-
- B := newGFp2(pool).Mul(p.x, r.t, pool)
-
- D := newGFp2(pool).Add(p.y, r.z)
- D.Square(D, pool)
- D.Sub(D, r2)
- D.Sub(D, r.t)
- D.Mul(D, r.t, pool)
-
- H := newGFp2(pool).Sub(B, r.x)
- I := newGFp2(pool).Square(H, pool)
-
- E := newGFp2(pool).Add(I, I)
- E.Add(E, E)
-
- J := newGFp2(pool).Mul(H, E, pool)
-
- L1 := newGFp2(pool).Sub(D, r.y)
- L1.Sub(L1, r.y)
-
- V := newGFp2(pool).Mul(r.x, E, pool)
-
- rOut = newTwistPoint(pool)
- rOut.x.Square(L1, pool)
- rOut.x.Sub(rOut.x, J)
- rOut.x.Sub(rOut.x, V)
- rOut.x.Sub(rOut.x, V)
-
- rOut.z.Add(r.z, H)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, r.t)
- rOut.z.Sub(rOut.z, I)
-
- t := newGFp2(pool).Sub(V, rOut.x)
- t.Mul(t, L1, pool)
- t2 := newGFp2(pool).Mul(r.y, J, pool)
- t2.Add(t2, t2)
- rOut.y.Sub(t, t2)
-
- rOut.t.Square(rOut.z, pool)
-
- t.Add(p.y, rOut.z)
- t.Square(t, pool)
- t.Sub(t, r2)
- t.Sub(t, rOut.t)
-
- t2.Mul(L1, p.x, pool)
- t2.Add(t2, t2)
- a = newGFp2(pool)
- a.Sub(t2, t)
-
- c = newGFp2(pool)
- c.MulScalar(rOut.z, q.y)
- c.Add(c, c)
-
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, L1)
- b.MulScalar(b, q.x)
- b.Add(b, b)
-
- B.Put(pool)
- D.Put(pool)
- H.Put(pool)
- I.Put(pool)
- E.Put(pool)
- J.Put(pool)
- L1.Put(pool)
- V.Put(pool)
- t.Put(pool)
- t2.Put(pool)
-
- return
-}
-
-func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the doubling algorithm for a=0 from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
-
- A := newGFp2(pool).Square(r.x, pool)
- B := newGFp2(pool).Square(r.y, pool)
- C := newGFp2(pool).Square(B, pool)
-
- D := newGFp2(pool).Add(r.x, B)
- D.Square(D, pool)
- D.Sub(D, A)
- D.Sub(D, C)
- D.Add(D, D)
-
- E := newGFp2(pool).Add(A, A)
- E.Add(E, A)
-
- G := newGFp2(pool).Square(E, pool)
-
- rOut = newTwistPoint(pool)
- rOut.x.Sub(G, D)
- rOut.x.Sub(rOut.x, D)
-
- rOut.z.Add(r.y, r.z)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, B)
- rOut.z.Sub(rOut.z, r.t)
-
- rOut.y.Sub(D, rOut.x)
- rOut.y.Mul(rOut.y, E, pool)
- t := newGFp2(pool).Add(C, C)
- t.Add(t, t)
- t.Add(t, t)
- rOut.y.Sub(rOut.y, t)
-
- rOut.t.Square(rOut.z, pool)
-
- t.Mul(E, r.t, pool)
- t.Add(t, t)
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, t)
- b.MulScalar(b, q.x)
-
- a = newGFp2(pool)
- a.Add(r.x, E)
- a.Square(a, pool)
- a.Sub(a, A)
- a.Sub(a, G)
- t.Add(B, B)
- t.Add(t, t)
- a.Sub(a, t)
-
- c = newGFp2(pool)
- c.Mul(rOut.z, r.t, pool)
- c.Add(c, c)
- c.MulScalar(c, q.y)
-
- A.Put(pool)
- B.Put(pool)
- C.Put(pool)
- D.Put(pool)
- E.Put(pool)
- G.Put(pool)
- t.Put(pool)
-
- return
-}
-
-func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
- a2 := newGFp6(pool)
- a2.x.SetZero()
- a2.y.Set(a)
- a2.z.Set(b)
- a2.Mul(a2, ret.x, pool)
- t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
-
- t := newGFp2(pool)
- t.Add(b, c)
- t2 := newGFp6(pool)
- t2.x.SetZero()
- t2.y.Set(a)
- t2.z.Set(t)
- ret.x.Add(ret.x, ret.y)
-
- ret.y.Set(t3)
-
- ret.x.Mul(ret.x, t2, pool)
- ret.x.Sub(ret.x, a2)
- ret.x.Sub(ret.x, ret.y)
- a2.MulTau(a2, pool)
- ret.y.Add(ret.y, a2)
-
- a2.Put(pool)
- t3.Put(pool)
- t2.Put(pool)
- t.Put(pool)
-}
-
-// sixuPlus2NAF is 6u+2 in non-adjacent form.
-var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1}
-
-// miller implements the Miller loop for calculating the Optimal Ate pairing.
-// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
-func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
- ret := newGFp12(pool)
- ret.SetOne()
-
- aAffine := newTwistPoint(pool)
- aAffine.Set(q)
- aAffine.MakeAffine(pool)
-
- bAffine := newCurvePoint(pool)
- bAffine.Set(p)
- bAffine.MakeAffine(pool)
-
- minusA := newTwistPoint(pool)
- minusA.Negative(aAffine, pool)
-
- r := newTwistPoint(pool)
- r.Set(aAffine)
-
- r2 := newGFp2(pool)
- r2.Square(aAffine.y, pool)
-
- for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
- a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
- if i != len(sixuPlus2NAF)-1 {
- ret.Square(ret, pool)
- }
-
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- switch sixuPlus2NAF[i-1] {
- case 1:
- a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
- case -1:
- a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
- default:
- continue
- }
-
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- }
-
- // In order to calculate Q1 we have to convert q from the sextic twist
- // to the full GF(p^12) group, apply the Frobenius there, and convert
- // back.
- //
- // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
- // x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
- // where x̄ is the conjugate of x. If we are going to apply the inverse
- // isomorphism we need a value with a single coefficient of ω² so we
- // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
- // p, 2p-2 is a multiple of six. Therefore we can rewrite as
- // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
- // ω².
- //
- // A similar argument can be made for the y value.
-
- q1 := newTwistPoint(pool)
- q1.x.Conjugate(aAffine.x)
- q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
- q1.y.Conjugate(aAffine.y)
- q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
- q1.z.SetOne()
- q1.t.SetOne()
-
- // For Q2 we are applying the p² Frobenius. The two conjugations cancel
- // out and we are left only with the factors from the isomorphism. In
- // the case of x, we end up with a pure number which is why
- // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
- // ignore this to end up with -Q2.
-
- minusQ2 := newTwistPoint(pool)
- minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
- minusQ2.y.Set(aAffine.y)
- minusQ2.z.SetOne()
- minusQ2.t.SetOne()
-
- r2.Square(q1.y, pool)
- a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- r2.Square(minusQ2.y, pool)
- a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
-
- aAffine.Put(pool)
- bAffine.Put(pool)
- minusA.Put(pool)
- r.Put(pool)
- r2.Put(pool)
-
- return ret
-}
-
-// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
-// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
-// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
-func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
- t1 := newGFp12(pool)
-
- // This is the p^6-Frobenius
- t1.x.Negative(in.x)
- t1.y.Set(in.y)
-
- inv := newGFp12(pool)
- inv.Invert(in, pool)
- t1.Mul(t1, inv, pool)
-
- t2 := newGFp12(pool).FrobeniusP2(t1, pool)
- t1.Mul(t1, t2, pool)
-
- fp := newGFp12(pool).Frobenius(t1, pool)
- fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
- fp3 := newGFp12(pool).Frobenius(fp2, pool)
-
- fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- fu.Exp(t1, u, pool)
- fu2.Exp(fu, u, pool)
- fu3.Exp(fu2, u, pool)
-
- y3 := newGFp12(pool).Frobenius(fu, pool)
- fu2p := newGFp12(pool).Frobenius(fu2, pool)
- fu3p := newGFp12(pool).Frobenius(fu3, pool)
- y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
-
- y0 := newGFp12(pool)
- y0.Mul(fp, fp2, pool)
- y0.Mul(y0, fp3, pool)
-
- y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- y1.Conjugate(t1)
- y5.Conjugate(fu2)
- y3.Conjugate(y3)
- y4.Mul(fu, fu2p, pool)
- y4.Conjugate(y4)
-
- y6 := newGFp12(pool)
- y6.Mul(fu3, fu3p, pool)
- y6.Conjugate(y6)
-
- t0 := newGFp12(pool)
- t0.Square(y6, pool)
- t0.Mul(t0, y4, pool)
- t0.Mul(t0, y5, pool)
- t1.Mul(y3, y5, pool)
- t1.Mul(t1, t0, pool)
- t0.Mul(t0, y2, pool)
- t1.Square(t1, pool)
- t1.Mul(t1, t0, pool)
- t1.Square(t1, pool)
- t0.Mul(t1, y1, pool)
- t1.Mul(t1, y0, pool)
- t0.Square(t0, pool)
- t0.Mul(t0, t1, pool)
-
- inv.Put(pool)
- t1.Put(pool)
- t2.Put(pool)
- fp.Put(pool)
- fp2.Put(pool)
- fp3.Put(pool)
- fu.Put(pool)
- fu2.Put(pool)
- fu3.Put(pool)
- fu2p.Put(pool)
- fu3p.Put(pool)
- y0.Put(pool)
- y1.Put(pool)
- y2.Put(pool)
- y3.Put(pool)
- y4.Put(pool)
- y5.Put(pool)
- y6.Put(pool)
-
- return t0
-}
-
-func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
- e := miller(a, b, pool)
- ret := finalExponentiation(e, pool)
- e.Put(pool)
-
- if a.IsInfinity() || b.IsInfinity() {
- ret.SetOne()
- }
-
- return ret
-}
diff --git a/vendor/golang.org/x/crypto/bn256/twist.go b/vendor/golang.org/x/crypto/bn256/twist.go
deleted file mode 100644
index 056d80f..0000000
--- a/vendor/golang.org/x/crypto/bn256/twist.go
+++ /dev/null
@@ -1,258 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bn256
-
-import (
- "math/big"
-)
-
-// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
-// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
-// n-torsion points of this curve over GF(p²) (where n = Order)
-type twistPoint struct {
- x, y, z, t *gfP2
-}
-
-var twistB = &gfP2{
- bigFromBase10("6500054969564660373279643874235990574282535810762300357187714502686418407178"),
- bigFromBase10("45500384786952622612957507119651934019977750675336102500314001518804928850249"),
-}
-
-// twistGen is the generator of group G₂.
-var twistGen = &twistPoint{
- &gfP2{
- bigFromBase10("21167961636542580255011770066570541300993051739349375019639421053990175267184"),
- bigFromBase10("64746500191241794695844075326670126197795977525365406531717464316923369116492"),
- },
- &gfP2{
- bigFromBase10("20666913350058776956210519119118544732556678129809273996262322366050359951122"),
- bigFromBase10("17778617556404439934652658462602675281523610326338642107814333856843981424549"),
- },
- &gfP2{
- bigFromBase10("0"),
- bigFromBase10("1"),
- },
- &gfP2{
- bigFromBase10("0"),
- bigFromBase10("1"),
- },
-}
-
-func newTwistPoint(pool *bnPool) *twistPoint {
- return &twistPoint{
- newGFp2(pool),
- newGFp2(pool),
- newGFp2(pool),
- newGFp2(pool),
- }
-}
-
-func (c *twistPoint) String() string {
- return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
-}
-
-func (c *twistPoint) Put(pool *bnPool) {
- c.x.Put(pool)
- c.y.Put(pool)
- c.z.Put(pool)
- c.t.Put(pool)
-}
-
-func (c *twistPoint) Set(a *twistPoint) {
- c.x.Set(a.x)
- c.y.Set(a.y)
- c.z.Set(a.z)
- c.t.Set(a.t)
-}
-
-// IsOnCurve returns true iff c is on the curve where c must be in affine form.
-func (c *twistPoint) IsOnCurve() bool {
- pool := new(bnPool)
- yy := newGFp2(pool).Square(c.y, pool)
- xxx := newGFp2(pool).Square(c.x, pool)
- xxx.Mul(xxx, c.x, pool)
- yy.Sub(yy, xxx)
- yy.Sub(yy, twistB)
- yy.Minimal()
- return yy.x.Sign() == 0 && yy.y.Sign() == 0
-}
-
-func (c *twistPoint) SetInfinity() {
- c.z.SetZero()
-}
-
-func (c *twistPoint) IsInfinity() bool {
- return c.z.IsZero()
-}
-
-func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
- // For additional comments, see the same function in curve.go.
-
- if a.IsInfinity() {
- c.Set(b)
- return
- }
- if b.IsInfinity() {
- c.Set(a)
- return
- }
-
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
- z1z1 := newGFp2(pool).Square(a.z, pool)
- z2z2 := newGFp2(pool).Square(b.z, pool)
- u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
- u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
-
- t := newGFp2(pool).Mul(b.z, z2z2, pool)
- s1 := newGFp2(pool).Mul(a.y, t, pool)
-
- t.Mul(a.z, z1z1, pool)
- s2 := newGFp2(pool).Mul(b.y, t, pool)
-
- h := newGFp2(pool).Sub(u2, u1)
- xEqual := h.IsZero()
-
- t.Add(h, h)
- i := newGFp2(pool).Square(t, pool)
- j := newGFp2(pool).Mul(h, i, pool)
-
- t.Sub(s2, s1)
- yEqual := t.IsZero()
- if xEqual && yEqual {
- c.Double(a, pool)
- return
- }
- r := newGFp2(pool).Add(t, t)
-
- v := newGFp2(pool).Mul(u1, i, pool)
-
- t4 := newGFp2(pool).Square(r, pool)
- t.Add(v, v)
- t6 := newGFp2(pool).Sub(t4, j)
- c.x.Sub(t6, t)
-
- t.Sub(v, c.x) // t7
- t4.Mul(s1, j, pool) // t8
- t6.Add(t4, t4) // t9
- t4.Mul(r, t, pool) // t10
- c.y.Sub(t4, t6)
-
- t.Add(a.z, b.z) // t11
- t4.Square(t, pool) // t12
- t.Sub(t4, z1z1) // t13
- t4.Sub(t, z2z2) // t14
- c.z.Mul(t4, h, pool)
-
- z1z1.Put(pool)
- z2z2.Put(pool)
- u1.Put(pool)
- u2.Put(pool)
- t.Put(pool)
- s1.Put(pool)
- s2.Put(pool)
- h.Put(pool)
- i.Put(pool)
- j.Put(pool)
- r.Put(pool)
- v.Put(pool)
- t4.Put(pool)
- t6.Put(pool)
-}
-
-func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
- // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
- A := newGFp2(pool).Square(a.x, pool)
- B := newGFp2(pool).Square(a.y, pool)
- C := newGFp2(pool).Square(B, pool)
-
- t := newGFp2(pool).Add(a.x, B)
- t2 := newGFp2(pool).Square(t, pool)
- t.Sub(t2, A)
- t2.Sub(t, C)
- d := newGFp2(pool).Add(t2, t2)
- t.Add(A, A)
- e := newGFp2(pool).Add(t, A)
- f := newGFp2(pool).Square(e, pool)
-
- t.Add(d, d)
- c.x.Sub(f, t)
-
- t.Add(C, C)
- t2.Add(t, t)
- t.Add(t2, t2)
- c.y.Sub(d, c.x)
- t2.Mul(e, c.y, pool)
- c.y.Sub(t2, t)
-
- t.Mul(a.y, a.z, pool)
- c.z.Add(t, t)
-
- A.Put(pool)
- B.Put(pool)
- C.Put(pool)
- t.Put(pool)
- t2.Put(pool)
- d.Put(pool)
- e.Put(pool)
- f.Put(pool)
-}
-
-func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
- sum := newTwistPoint(pool)
- sum.SetInfinity()
- t := newTwistPoint(pool)
-
- for i := scalar.BitLen(); i >= 0; i-- {
- t.Double(sum, pool)
- if scalar.Bit(i) != 0 {
- sum.Add(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
-
- c.Set(sum)
- sum.Put(pool)
- t.Put(pool)
- return c
-}
-
-// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
-// c to 0 : 1 : 0.
-func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
- if c.z.IsOne() {
- return c
- }
- if c.IsInfinity() {
- c.x.SetZero()
- c.y.SetOne()
- c.z.SetZero()
- c.t.SetZero()
- return c
- }
-
- zInv := newGFp2(pool).Invert(c.z, pool)
- t := newGFp2(pool).Mul(c.y, zInv, pool)
- zInv2 := newGFp2(pool).Square(zInv, pool)
- c.y.Mul(t, zInv2, pool)
- t.Mul(c.x, zInv2, pool)
- c.x.Set(t)
- c.z.SetOne()
- c.t.SetOne()
-
- zInv.Put(pool)
- t.Put(pool)
- zInv2.Put(pool)
-
- return c
-}
-
-func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
- c.x.Set(a.x)
- c.y.SetZero()
- c.y.Sub(c.y, a.y)
- c.z.Set(a.z)
- c.t.SetZero()
-}