aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/golang/protobuf/jsonpb/jsonpb.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/protobuf/jsonpb/jsonpb.go')
-rw-r--r--vendor/github.com/golang/protobuf/jsonpb/jsonpb.go1241
1 files changed, 0 insertions, 1241 deletions
diff --git a/vendor/github.com/golang/protobuf/jsonpb/jsonpb.go b/vendor/github.com/golang/protobuf/jsonpb/jsonpb.go
deleted file mode 100644
index ff368f3..0000000
--- a/vendor/github.com/golang/protobuf/jsonpb/jsonpb.go
+++ /dev/null
@@ -1,1241 +0,0 @@
-// Go support for Protocol Buffers - Google's data interchange format
-//
-// Copyright 2015 The Go Authors. All rights reserved.
-// https://github.com/golang/protobuf
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-/*
-Package jsonpb provides marshaling and unmarshaling between protocol buffers and JSON.
-It follows the specification at https://developers.google.com/protocol-buffers/docs/proto3#json.
-
-This package produces a different output than the standard "encoding/json" package,
-which does not operate correctly on protocol buffers.
-*/
-package jsonpb
-
-import (
- "bytes"
- "encoding/json"
- "errors"
- "fmt"
- "io"
- "math"
- "reflect"
- "sort"
- "strconv"
- "strings"
- "time"
-
- "github.com/golang/protobuf/proto"
-
- stpb "github.com/golang/protobuf/ptypes/struct"
-)
-
-const secondInNanos = int64(time.Second / time.Nanosecond)
-
-// Marshaler is a configurable object for converting between
-// protocol buffer objects and a JSON representation for them.
-type Marshaler struct {
- // Whether to render enum values as integers, as opposed to string values.
- EnumsAsInts bool
-
- // Whether to render fields with zero values.
- EmitDefaults bool
-
- // A string to indent each level by. The presence of this field will
- // also cause a space to appear between the field separator and
- // value, and for newlines to be appear between fields and array
- // elements.
- Indent string
-
- // Whether to use the original (.proto) name for fields.
- OrigName bool
-
- // A custom URL resolver to use when marshaling Any messages to JSON.
- // If unset, the default resolution strategy is to extract the
- // fully-qualified type name from the type URL and pass that to
- // proto.MessageType(string).
- AnyResolver AnyResolver
-}
-
-// AnyResolver takes a type URL, present in an Any message, and resolves it into
-// an instance of the associated message.
-type AnyResolver interface {
- Resolve(typeUrl string) (proto.Message, error)
-}
-
-func defaultResolveAny(typeUrl string) (proto.Message, error) {
- // Only the part of typeUrl after the last slash is relevant.
- mname := typeUrl
- if slash := strings.LastIndex(mname, "/"); slash >= 0 {
- mname = mname[slash+1:]
- }
- mt := proto.MessageType(mname)
- if mt == nil {
- return nil, fmt.Errorf("unknown message type %q", mname)
- }
- return reflect.New(mt.Elem()).Interface().(proto.Message), nil
-}
-
-// JSONPBMarshaler is implemented by protobuf messages that customize the
-// way they are marshaled to JSON. Messages that implement this should
-// also implement JSONPBUnmarshaler so that the custom format can be
-// parsed.
-type JSONPBMarshaler interface {
- MarshalJSONPB(*Marshaler) ([]byte, error)
-}
-
-// JSONPBUnmarshaler is implemented by protobuf messages that customize
-// the way they are unmarshaled from JSON. Messages that implement this
-// should also implement JSONPBMarshaler so that the custom format can be
-// produced.
-type JSONPBUnmarshaler interface {
- UnmarshalJSONPB(*Unmarshaler, []byte) error
-}
-
-// Marshal marshals a protocol buffer into JSON.
-func (m *Marshaler) Marshal(out io.Writer, pb proto.Message) error {
- v := reflect.ValueOf(pb)
- if pb == nil || (v.Kind() == reflect.Ptr && v.IsNil()) {
- return errors.New("Marshal called with nil")
- }
- // Check for unset required fields first.
- if err := checkRequiredFields(pb); err != nil {
- return err
- }
- writer := &errWriter{writer: out}
- return m.marshalObject(writer, pb, "", "")
-}
-
-// MarshalToString converts a protocol buffer object to JSON string.
-func (m *Marshaler) MarshalToString(pb proto.Message) (string, error) {
- var buf bytes.Buffer
- if err := m.Marshal(&buf, pb); err != nil {
- return "", err
- }
- return buf.String(), nil
-}
-
-type int32Slice []int32
-
-var nonFinite = map[string]float64{
- `"NaN"`: math.NaN(),
- `"Infinity"`: math.Inf(1),
- `"-Infinity"`: math.Inf(-1),
-}
-
-// For sorting extensions ids to ensure stable output.
-func (s int32Slice) Len() int { return len(s) }
-func (s int32Slice) Less(i, j int) bool { return s[i] < s[j] }
-func (s int32Slice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
-type wkt interface {
- XXX_WellKnownType() string
-}
-
-// marshalObject writes a struct to the Writer.
-func (m *Marshaler) marshalObject(out *errWriter, v proto.Message, indent, typeURL string) error {
- if jsm, ok := v.(JSONPBMarshaler); ok {
- b, err := jsm.MarshalJSONPB(m)
- if err != nil {
- return err
- }
- if typeURL != "" {
- // we are marshaling this object to an Any type
- var js map[string]*json.RawMessage
- if err = json.Unmarshal(b, &js); err != nil {
- return fmt.Errorf("type %T produced invalid JSON: %v", v, err)
- }
- turl, err := json.Marshal(typeURL)
- if err != nil {
- return fmt.Errorf("failed to marshal type URL %q to JSON: %v", typeURL, err)
- }
- js["@type"] = (*json.RawMessage)(&turl)
- if b, err = json.Marshal(js); err != nil {
- return err
- }
- }
-
- out.write(string(b))
- return out.err
- }
-
- s := reflect.ValueOf(v).Elem()
-
- // Handle well-known types.
- if wkt, ok := v.(wkt); ok {
- switch wkt.XXX_WellKnownType() {
- case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value",
- "Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue":
- // "Wrappers use the same representation in JSON
- // as the wrapped primitive type, ..."
- sprop := proto.GetProperties(s.Type())
- return m.marshalValue(out, sprop.Prop[0], s.Field(0), indent)
- case "Any":
- // Any is a bit more involved.
- return m.marshalAny(out, v, indent)
- case "Duration":
- // "Generated output always contains 0, 3, 6, or 9 fractional digits,
- // depending on required precision."
- s, ns := s.Field(0).Int(), s.Field(1).Int()
- if ns <= -secondInNanos || ns >= secondInNanos {
- return fmt.Errorf("ns out of range (%v, %v)", -secondInNanos, secondInNanos)
- }
- if (s > 0 && ns < 0) || (s < 0 && ns > 0) {
- return errors.New("signs of seconds and nanos do not match")
- }
- if s < 0 {
- ns = -ns
- }
- x := fmt.Sprintf("%d.%09d", s, ns)
- x = strings.TrimSuffix(x, "000")
- x = strings.TrimSuffix(x, "000")
- x = strings.TrimSuffix(x, ".000")
- out.write(`"`)
- out.write(x)
- out.write(`s"`)
- return out.err
- case "Struct", "ListValue":
- // Let marshalValue handle the `Struct.fields` map or the `ListValue.values` slice.
- // TODO: pass the correct Properties if needed.
- return m.marshalValue(out, &proto.Properties{}, s.Field(0), indent)
- case "Timestamp":
- // "RFC 3339, where generated output will always be Z-normalized
- // and uses 0, 3, 6 or 9 fractional digits."
- s, ns := s.Field(0).Int(), s.Field(1).Int()
- if ns < 0 || ns >= secondInNanos {
- return fmt.Errorf("ns out of range [0, %v)", secondInNanos)
- }
- t := time.Unix(s, ns).UTC()
- // time.RFC3339Nano isn't exactly right (we need to get 3/6/9 fractional digits).
- x := t.Format("2006-01-02T15:04:05.000000000")
- x = strings.TrimSuffix(x, "000")
- x = strings.TrimSuffix(x, "000")
- x = strings.TrimSuffix(x, ".000")
- out.write(`"`)
- out.write(x)
- out.write(`Z"`)
- return out.err
- case "Value":
- // Value has a single oneof.
- kind := s.Field(0)
- if kind.IsNil() {
- // "absence of any variant indicates an error"
- return errors.New("nil Value")
- }
- // oneof -> *T -> T -> T.F
- x := kind.Elem().Elem().Field(0)
- // TODO: pass the correct Properties if needed.
- return m.marshalValue(out, &proto.Properties{}, x, indent)
- }
- }
-
- out.write("{")
- if m.Indent != "" {
- out.write("\n")
- }
-
- firstField := true
-
- if typeURL != "" {
- if err := m.marshalTypeURL(out, indent, typeURL); err != nil {
- return err
- }
- firstField = false
- }
-
- for i := 0; i < s.NumField(); i++ {
- value := s.Field(i)
- valueField := s.Type().Field(i)
- if strings.HasPrefix(valueField.Name, "XXX_") {
- continue
- }
-
- // IsNil will panic on most value kinds.
- switch value.Kind() {
- case reflect.Chan, reflect.Func, reflect.Interface:
- if value.IsNil() {
- continue
- }
- }
-
- if !m.EmitDefaults {
- switch value.Kind() {
- case reflect.Bool:
- if !value.Bool() {
- continue
- }
- case reflect.Int32, reflect.Int64:
- if value.Int() == 0 {
- continue
- }
- case reflect.Uint32, reflect.Uint64:
- if value.Uint() == 0 {
- continue
- }
- case reflect.Float32, reflect.Float64:
- if value.Float() == 0 {
- continue
- }
- case reflect.String:
- if value.Len() == 0 {
- continue
- }
- case reflect.Map, reflect.Ptr, reflect.Slice:
- if value.IsNil() {
- continue
- }
- }
- }
-
- // Oneof fields need special handling.
- if valueField.Tag.Get("protobuf_oneof") != "" {
- // value is an interface containing &T{real_value}.
- sv := value.Elem().Elem() // interface -> *T -> T
- value = sv.Field(0)
- valueField = sv.Type().Field(0)
- }
- prop := jsonProperties(valueField, m.OrigName)
- if !firstField {
- m.writeSep(out)
- }
- if err := m.marshalField(out, prop, value, indent); err != nil {
- return err
- }
- firstField = false
- }
-
- // Handle proto2 extensions.
- if ep, ok := v.(proto.Message); ok {
- extensions := proto.RegisteredExtensions(v)
- // Sort extensions for stable output.
- ids := make([]int32, 0, len(extensions))
- for id, desc := range extensions {
- if !proto.HasExtension(ep, desc) {
- continue
- }
- ids = append(ids, id)
- }
- sort.Sort(int32Slice(ids))
- for _, id := range ids {
- desc := extensions[id]
- if desc == nil {
- // unknown extension
- continue
- }
- ext, extErr := proto.GetExtension(ep, desc)
- if extErr != nil {
- return extErr
- }
- value := reflect.ValueOf(ext)
- var prop proto.Properties
- prop.Parse(desc.Tag)
- prop.JSONName = fmt.Sprintf("[%s]", desc.Name)
- if !firstField {
- m.writeSep(out)
- }
- if err := m.marshalField(out, &prop, value, indent); err != nil {
- return err
- }
- firstField = false
- }
-
- }
-
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- }
- out.write("}")
- return out.err
-}
-
-func (m *Marshaler) writeSep(out *errWriter) {
- if m.Indent != "" {
- out.write(",\n")
- } else {
- out.write(",")
- }
-}
-
-func (m *Marshaler) marshalAny(out *errWriter, any proto.Message, indent string) error {
- // "If the Any contains a value that has a special JSON mapping,
- // it will be converted as follows: {"@type": xxx, "value": yyy}.
- // Otherwise, the value will be converted into a JSON object,
- // and the "@type" field will be inserted to indicate the actual data type."
- v := reflect.ValueOf(any).Elem()
- turl := v.Field(0).String()
- val := v.Field(1).Bytes()
-
- var msg proto.Message
- var err error
- if m.AnyResolver != nil {
- msg, err = m.AnyResolver.Resolve(turl)
- } else {
- msg, err = defaultResolveAny(turl)
- }
- if err != nil {
- return err
- }
-
- if err := proto.Unmarshal(val, msg); err != nil {
- return err
- }
-
- if _, ok := msg.(wkt); ok {
- out.write("{")
- if m.Indent != "" {
- out.write("\n")
- }
- if err := m.marshalTypeURL(out, indent, turl); err != nil {
- return err
- }
- m.writeSep(out)
- if m.Indent != "" {
- out.write(indent)
- out.write(m.Indent)
- out.write(`"value": `)
- } else {
- out.write(`"value":`)
- }
- if err := m.marshalObject(out, msg, indent+m.Indent, ""); err != nil {
- return err
- }
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- }
- out.write("}")
- return out.err
- }
-
- return m.marshalObject(out, msg, indent, turl)
-}
-
-func (m *Marshaler) marshalTypeURL(out *errWriter, indent, typeURL string) error {
- if m.Indent != "" {
- out.write(indent)
- out.write(m.Indent)
- }
- out.write(`"@type":`)
- if m.Indent != "" {
- out.write(" ")
- }
- b, err := json.Marshal(typeURL)
- if err != nil {
- return err
- }
- out.write(string(b))
- return out.err
-}
-
-// marshalField writes field description and value to the Writer.
-func (m *Marshaler) marshalField(out *errWriter, prop *proto.Properties, v reflect.Value, indent string) error {
- if m.Indent != "" {
- out.write(indent)
- out.write(m.Indent)
- }
- out.write(`"`)
- out.write(prop.JSONName)
- out.write(`":`)
- if m.Indent != "" {
- out.write(" ")
- }
- if err := m.marshalValue(out, prop, v, indent); err != nil {
- return err
- }
- return nil
-}
-
-// marshalValue writes the value to the Writer.
-func (m *Marshaler) marshalValue(out *errWriter, prop *proto.Properties, v reflect.Value, indent string) error {
- var err error
- v = reflect.Indirect(v)
-
- // Handle nil pointer
- if v.Kind() == reflect.Invalid {
- out.write("null")
- return out.err
- }
-
- // Handle repeated elements.
- if v.Kind() == reflect.Slice && v.Type().Elem().Kind() != reflect.Uint8 {
- out.write("[")
- comma := ""
- for i := 0; i < v.Len(); i++ {
- sliceVal := v.Index(i)
- out.write(comma)
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- out.write(m.Indent)
- out.write(m.Indent)
- }
- if err := m.marshalValue(out, prop, sliceVal, indent+m.Indent); err != nil {
- return err
- }
- comma = ","
- }
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- out.write(m.Indent)
- }
- out.write("]")
- return out.err
- }
-
- // Handle well-known types.
- // Most are handled up in marshalObject (because 99% are messages).
- if wkt, ok := v.Interface().(wkt); ok {
- switch wkt.XXX_WellKnownType() {
- case "NullValue":
- out.write("null")
- return out.err
- }
- }
-
- // Handle enumerations.
- if !m.EnumsAsInts && prop.Enum != "" {
- // Unknown enum values will are stringified by the proto library as their
- // value. Such values should _not_ be quoted or they will be interpreted
- // as an enum string instead of their value.
- enumStr := v.Interface().(fmt.Stringer).String()
- var valStr string
- if v.Kind() == reflect.Ptr {
- valStr = strconv.Itoa(int(v.Elem().Int()))
- } else {
- valStr = strconv.Itoa(int(v.Int()))
- }
- isKnownEnum := enumStr != valStr
- if isKnownEnum {
- out.write(`"`)
- }
- out.write(enumStr)
- if isKnownEnum {
- out.write(`"`)
- }
- return out.err
- }
-
- // Handle nested messages.
- if v.Kind() == reflect.Struct {
- return m.marshalObject(out, v.Addr().Interface().(proto.Message), indent+m.Indent, "")
- }
-
- // Handle maps.
- // Since Go randomizes map iteration, we sort keys for stable output.
- if v.Kind() == reflect.Map {
- out.write(`{`)
- keys := v.MapKeys()
- sort.Sort(mapKeys(keys))
- for i, k := range keys {
- if i > 0 {
- out.write(`,`)
- }
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- out.write(m.Indent)
- out.write(m.Indent)
- }
-
- b, err := json.Marshal(k.Interface())
- if err != nil {
- return err
- }
- s := string(b)
-
- // If the JSON is not a string value, encode it again to make it one.
- if !strings.HasPrefix(s, `"`) {
- b, err := json.Marshal(s)
- if err != nil {
- return err
- }
- s = string(b)
- }
-
- out.write(s)
- out.write(`:`)
- if m.Indent != "" {
- out.write(` `)
- }
-
- if err := m.marshalValue(out, prop, v.MapIndex(k), indent+m.Indent); err != nil {
- return err
- }
- }
- if m.Indent != "" {
- out.write("\n")
- out.write(indent)
- out.write(m.Indent)
- }
- out.write(`}`)
- return out.err
- }
-
- // Handle non-finite floats, e.g. NaN, Infinity and -Infinity.
- if v.Kind() == reflect.Float32 || v.Kind() == reflect.Float64 {
- f := v.Float()
- var sval string
- switch {
- case math.IsInf(f, 1):
- sval = `"Infinity"`
- case math.IsInf(f, -1):
- sval = `"-Infinity"`
- case math.IsNaN(f):
- sval = `"NaN"`
- }
- if sval != "" {
- out.write(sval)
- return out.err
- }
- }
-
- // Default handling defers to the encoding/json library.
- b, err := json.Marshal(v.Interface())
- if err != nil {
- return err
- }
- needToQuote := string(b[0]) != `"` && (v.Kind() == reflect.Int64 || v.Kind() == reflect.Uint64)
- if needToQuote {
- out.write(`"`)
- }
- out.write(string(b))
- if needToQuote {
- out.write(`"`)
- }
- return out.err
-}
-
-// Unmarshaler is a configurable object for converting from a JSON
-// representation to a protocol buffer object.
-type Unmarshaler struct {
- // Whether to allow messages to contain unknown fields, as opposed to
- // failing to unmarshal.
- AllowUnknownFields bool
-
- // A custom URL resolver to use when unmarshaling Any messages from JSON.
- // If unset, the default resolution strategy is to extract the
- // fully-qualified type name from the type URL and pass that to
- // proto.MessageType(string).
- AnyResolver AnyResolver
-}
-
-// UnmarshalNext unmarshals the next protocol buffer from a JSON object stream.
-// This function is lenient and will decode any options permutations of the
-// related Marshaler.
-func (u *Unmarshaler) UnmarshalNext(dec *json.Decoder, pb proto.Message) error {
- inputValue := json.RawMessage{}
- if err := dec.Decode(&inputValue); err != nil {
- return err
- }
- if err := u.unmarshalValue(reflect.ValueOf(pb).Elem(), inputValue, nil); err != nil {
- return err
- }
- return checkRequiredFields(pb)
-}
-
-// Unmarshal unmarshals a JSON object stream into a protocol
-// buffer. This function is lenient and will decode any options
-// permutations of the related Marshaler.
-func (u *Unmarshaler) Unmarshal(r io.Reader, pb proto.Message) error {
- dec := json.NewDecoder(r)
- return u.UnmarshalNext(dec, pb)
-}
-
-// UnmarshalNext unmarshals the next protocol buffer from a JSON object stream.
-// This function is lenient and will decode any options permutations of the
-// related Marshaler.
-func UnmarshalNext(dec *json.Decoder, pb proto.Message) error {
- return new(Unmarshaler).UnmarshalNext(dec, pb)
-}
-
-// Unmarshal unmarshals a JSON object stream into a protocol
-// buffer. This function is lenient and will decode any options
-// permutations of the related Marshaler.
-func Unmarshal(r io.Reader, pb proto.Message) error {
- return new(Unmarshaler).Unmarshal(r, pb)
-}
-
-// UnmarshalString will populate the fields of a protocol buffer based
-// on a JSON string. This function is lenient and will decode any options
-// permutations of the related Marshaler.
-func UnmarshalString(str string, pb proto.Message) error {
- return new(Unmarshaler).Unmarshal(strings.NewReader(str), pb)
-}
-
-// unmarshalValue converts/copies a value into the target.
-// prop may be nil.
-func (u *Unmarshaler) unmarshalValue(target reflect.Value, inputValue json.RawMessage, prop *proto.Properties) error {
- targetType := target.Type()
-
- // Allocate memory for pointer fields.
- if targetType.Kind() == reflect.Ptr {
- // If input value is "null" and target is a pointer type, then the field should be treated as not set
- // UNLESS the target is structpb.Value, in which case it should be set to structpb.NullValue.
- _, isJSONPBUnmarshaler := target.Interface().(JSONPBUnmarshaler)
- if string(inputValue) == "null" && targetType != reflect.TypeOf(&stpb.Value{}) && !isJSONPBUnmarshaler {
- return nil
- }
- target.Set(reflect.New(targetType.Elem()))
-
- return u.unmarshalValue(target.Elem(), inputValue, prop)
- }
-
- if jsu, ok := target.Addr().Interface().(JSONPBUnmarshaler); ok {
- return jsu.UnmarshalJSONPB(u, []byte(inputValue))
- }
-
- // Handle well-known types that are not pointers.
- if w, ok := target.Addr().Interface().(wkt); ok {
- switch w.XXX_WellKnownType() {
- case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value",
- "Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue":
- return u.unmarshalValue(target.Field(0), inputValue, prop)
- case "Any":
- // Use json.RawMessage pointer type instead of value to support pre-1.8 version.
- // 1.8 changed RawMessage.MarshalJSON from pointer type to value type, see
- // https://github.com/golang/go/issues/14493
- var jsonFields map[string]*json.RawMessage
- if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
- return err
- }
-
- val, ok := jsonFields["@type"]
- if !ok || val == nil {
- return errors.New("Any JSON doesn't have '@type'")
- }
-
- var turl string
- if err := json.Unmarshal([]byte(*val), &turl); err != nil {
- return fmt.Errorf("can't unmarshal Any's '@type': %q", *val)
- }
- target.Field(0).SetString(turl)
-
- var m proto.Message
- var err error
- if u.AnyResolver != nil {
- m, err = u.AnyResolver.Resolve(turl)
- } else {
- m, err = defaultResolveAny(turl)
- }
- if err != nil {
- return err
- }
-
- if _, ok := m.(wkt); ok {
- val, ok := jsonFields["value"]
- if !ok {
- return errors.New("Any JSON doesn't have 'value'")
- }
-
- if err := u.unmarshalValue(reflect.ValueOf(m).Elem(), *val, nil); err != nil {
- return fmt.Errorf("can't unmarshal Any nested proto %T: %v", m, err)
- }
- } else {
- delete(jsonFields, "@type")
- nestedProto, err := json.Marshal(jsonFields)
- if err != nil {
- return fmt.Errorf("can't generate JSON for Any's nested proto to be unmarshaled: %v", err)
- }
-
- if err = u.unmarshalValue(reflect.ValueOf(m).Elem(), nestedProto, nil); err != nil {
- return fmt.Errorf("can't unmarshal Any nested proto %T: %v", m, err)
- }
- }
-
- b, err := proto.Marshal(m)
- if err != nil {
- return fmt.Errorf("can't marshal proto %T into Any.Value: %v", m, err)
- }
- target.Field(1).SetBytes(b)
-
- return nil
- case "Duration":
- unq, err := strconv.Unquote(string(inputValue))
- if err != nil {
- return err
- }
-
- d, err := time.ParseDuration(unq)
- if err != nil {
- return fmt.Errorf("bad Duration: %v", err)
- }
-
- ns := d.Nanoseconds()
- s := ns / 1e9
- ns %= 1e9
- target.Field(0).SetInt(s)
- target.Field(1).SetInt(ns)
- return nil
- case "Timestamp":
- unq, err := strconv.Unquote(string(inputValue))
- if err != nil {
- return err
- }
-
- t, err := time.Parse(time.RFC3339Nano, unq)
- if err != nil {
- return fmt.Errorf("bad Timestamp: %v", err)
- }
-
- target.Field(0).SetInt(t.Unix())
- target.Field(1).SetInt(int64(t.Nanosecond()))
- return nil
- case "Struct":
- var m map[string]json.RawMessage
- if err := json.Unmarshal(inputValue, &m); err != nil {
- return fmt.Errorf("bad StructValue: %v", err)
- }
-
- target.Field(0).Set(reflect.ValueOf(map[string]*stpb.Value{}))
- for k, jv := range m {
- pv := &stpb.Value{}
- if err := u.unmarshalValue(reflect.ValueOf(pv).Elem(), jv, prop); err != nil {
- return fmt.Errorf("bad value in StructValue for key %q: %v", k, err)
- }
- target.Field(0).SetMapIndex(reflect.ValueOf(k), reflect.ValueOf(pv))
- }
- return nil
- case "ListValue":
- var s []json.RawMessage
- if err := json.Unmarshal(inputValue, &s); err != nil {
- return fmt.Errorf("bad ListValue: %v", err)
- }
-
- target.Field(0).Set(reflect.ValueOf(make([]*stpb.Value, len(s))))
- for i, sv := range s {
- if err := u.unmarshalValue(target.Field(0).Index(i), sv, prop); err != nil {
- return err
- }
- }
- return nil
- case "Value":
- ivStr := string(inputValue)
- if ivStr == "null" {
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_NullValue{}))
- } else if v, err := strconv.ParseFloat(ivStr, 0); err == nil {
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_NumberValue{v}))
- } else if v, err := strconv.Unquote(ivStr); err == nil {
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_StringValue{v}))
- } else if v, err := strconv.ParseBool(ivStr); err == nil {
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_BoolValue{v}))
- } else if err := json.Unmarshal(inputValue, &[]json.RawMessage{}); err == nil {
- lv := &stpb.ListValue{}
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_ListValue{lv}))
- return u.unmarshalValue(reflect.ValueOf(lv).Elem(), inputValue, prop)
- } else if err := json.Unmarshal(inputValue, &map[string]json.RawMessage{}); err == nil {
- sv := &stpb.Struct{}
- target.Field(0).Set(reflect.ValueOf(&stpb.Value_StructValue{sv}))
- return u.unmarshalValue(reflect.ValueOf(sv).Elem(), inputValue, prop)
- } else {
- return fmt.Errorf("unrecognized type for Value %q", ivStr)
- }
- return nil
- }
- }
-
- // Handle enums, which have an underlying type of int32,
- // and may appear as strings.
- // The case of an enum appearing as a number is handled
- // at the bottom of this function.
- if inputValue[0] == '"' && prop != nil && prop.Enum != "" {
- vmap := proto.EnumValueMap(prop.Enum)
- // Don't need to do unquoting; valid enum names
- // are from a limited character set.
- s := inputValue[1 : len(inputValue)-1]
- n, ok := vmap[string(s)]
- if !ok {
- return fmt.Errorf("unknown value %q for enum %s", s, prop.Enum)
- }
- if target.Kind() == reflect.Ptr { // proto2
- target.Set(reflect.New(targetType.Elem()))
- target = target.Elem()
- }
- target.SetInt(int64(n))
- return nil
- }
-
- // Handle nested messages.
- if targetType.Kind() == reflect.Struct {
- var jsonFields map[string]json.RawMessage
- if err := json.Unmarshal(inputValue, &jsonFields); err != nil {
- return err
- }
-
- consumeField := func(prop *proto.Properties) (json.RawMessage, bool) {
- // Be liberal in what names we accept; both orig_name and camelName are okay.
- fieldNames := acceptedJSONFieldNames(prop)
-
- vOrig, okOrig := jsonFields[fieldNames.orig]
- vCamel, okCamel := jsonFields[fieldNames.camel]
- if !okOrig && !okCamel {
- return nil, false
- }
- // If, for some reason, both are present in the data, favour the camelName.
- var raw json.RawMessage
- if okOrig {
- raw = vOrig
- delete(jsonFields, fieldNames.orig)
- }
- if okCamel {
- raw = vCamel
- delete(jsonFields, fieldNames.camel)
- }
- return raw, true
- }
-
- sprops := proto.GetProperties(targetType)
- for i := 0; i < target.NumField(); i++ {
- ft := target.Type().Field(i)
- if strings.HasPrefix(ft.Name, "XXX_") {
- continue
- }
-
- valueForField, ok := consumeField(sprops.Prop[i])
- if !ok {
- continue
- }
-
- if err := u.unmarshalValue(target.Field(i), valueForField, sprops.Prop[i]); err != nil {
- return err
- }
- }
- // Check for any oneof fields.
- if len(jsonFields) > 0 {
- for _, oop := range sprops.OneofTypes {
- raw, ok := consumeField(oop.Prop)
- if !ok {
- continue
- }
- nv := reflect.New(oop.Type.Elem())
- target.Field(oop.Field).Set(nv)
- if err := u.unmarshalValue(nv.Elem().Field(0), raw, oop.Prop); err != nil {
- return err
- }
- }
- }
- // Handle proto2 extensions.
- if len(jsonFields) > 0 {
- if ep, ok := target.Addr().Interface().(proto.Message); ok {
- for _, ext := range proto.RegisteredExtensions(ep) {
- name := fmt.Sprintf("[%s]", ext.Name)
- raw, ok := jsonFields[name]
- if !ok {
- continue
- }
- delete(jsonFields, name)
- nv := reflect.New(reflect.TypeOf(ext.ExtensionType).Elem())
- if err := u.unmarshalValue(nv.Elem(), raw, nil); err != nil {
- return err
- }
- if err := proto.SetExtension(ep, ext, nv.Interface()); err != nil {
- return err
- }
- }
- }
- }
- if !u.AllowUnknownFields && len(jsonFields) > 0 {
- // Pick any field to be the scapegoat.
- var f string
- for fname := range jsonFields {
- f = fname
- break
- }
- return fmt.Errorf("unknown field %q in %v", f, targetType)
- }
- return nil
- }
-
- // Handle arrays (which aren't encoded bytes)
- if targetType.Kind() == reflect.Slice && targetType.Elem().Kind() != reflect.Uint8 {
- var slc []json.RawMessage
- if err := json.Unmarshal(inputValue, &slc); err != nil {
- return err
- }
- if slc != nil {
- l := len(slc)
- target.Set(reflect.MakeSlice(targetType, l, l))
- for i := 0; i < l; i++ {
- if err := u.unmarshalValue(target.Index(i), slc[i], prop); err != nil {
- return err
- }
- }
- }
- return nil
- }
-
- // Handle maps (whose keys are always strings)
- if targetType.Kind() == reflect.Map {
- var mp map[string]json.RawMessage
- if err := json.Unmarshal(inputValue, &mp); err != nil {
- return err
- }
- if mp != nil {
- target.Set(reflect.MakeMap(targetType))
- for ks, raw := range mp {
- // Unmarshal map key. The core json library already decoded the key into a
- // string, so we handle that specially. Other types were quoted post-serialization.
- var k reflect.Value
- if targetType.Key().Kind() == reflect.String {
- k = reflect.ValueOf(ks)
- } else {
- k = reflect.New(targetType.Key()).Elem()
- // TODO: pass the correct Properties if needed.
- if err := u.unmarshalValue(k, json.RawMessage(ks), nil); err != nil {
- return err
- }
- }
-
- // Unmarshal map value.
- v := reflect.New(targetType.Elem()).Elem()
- // TODO: pass the correct Properties if needed.
- if err := u.unmarshalValue(v, raw, nil); err != nil {
- return err
- }
- target.SetMapIndex(k, v)
- }
- }
- return nil
- }
-
- // 64-bit integers can be encoded as strings. In this case we drop
- // the quotes and proceed as normal.
- isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64
- if isNum && strings.HasPrefix(string(inputValue), `"`) {
- inputValue = inputValue[1 : len(inputValue)-1]
- }
-
- // Non-finite numbers can be encoded as strings.
- isFloat := targetType.Kind() == reflect.Float32 || targetType.Kind() == reflect.Float64
- if isFloat {
- if num, ok := nonFinite[string(inputValue)]; ok {
- target.SetFloat(num)
- return nil
- }
- }
-
- // Use the encoding/json for parsing other value types.
- return json.Unmarshal(inputValue, target.Addr().Interface())
-}
-
-// jsonProperties returns parsed proto.Properties for the field and corrects JSONName attribute.
-func jsonProperties(f reflect.StructField, origName bool) *proto.Properties {
- var prop proto.Properties
- prop.Init(f.Type, f.Name, f.Tag.Get("protobuf"), &f)
- if origName || prop.JSONName == "" {
- prop.JSONName = prop.OrigName
- }
- return &prop
-}
-
-type fieldNames struct {
- orig, camel string
-}
-
-func acceptedJSONFieldNames(prop *proto.Properties) fieldNames {
- opts := fieldNames{orig: prop.OrigName, camel: prop.OrigName}
- if prop.JSONName != "" {
- opts.camel = prop.JSONName
- }
- return opts
-}
-
-// Writer wrapper inspired by https://blog.golang.org/errors-are-values
-type errWriter struct {
- writer io.Writer
- err error
-}
-
-func (w *errWriter) write(str string) {
- if w.err != nil {
- return
- }
- _, w.err = w.writer.Write([]byte(str))
-}
-
-// Map fields may have key types of non-float scalars, strings and enums.
-// The easiest way to sort them in some deterministic order is to use fmt.
-// If this turns out to be inefficient we can always consider other options,
-// such as doing a Schwartzian transform.
-//
-// Numeric keys are sorted in numeric order per
-// https://developers.google.com/protocol-buffers/docs/proto#maps.
-type mapKeys []reflect.Value
-
-func (s mapKeys) Len() int { return len(s) }
-func (s mapKeys) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-func (s mapKeys) Less(i, j int) bool {
- if k := s[i].Kind(); k == s[j].Kind() {
- switch k {
- case reflect.Int32, reflect.Int64:
- return s[i].Int() < s[j].Int()
- case reflect.Uint32, reflect.Uint64:
- return s[i].Uint() < s[j].Uint()
- }
- }
- return fmt.Sprint(s[i].Interface()) < fmt.Sprint(s[j].Interface())
-}
-
-// checkRequiredFields returns an error if any required field in the given proto message is not set.
-// This function is used by both Marshal and Unmarshal. While required fields only exist in a
-// proto2 message, a proto3 message can contain proto2 message(s).
-func checkRequiredFields(pb proto.Message) error {
- // Most well-known type messages do not contain required fields. The "Any" type may contain
- // a message that has required fields.
- //
- // When an Any message is being marshaled, the code will invoked proto.Unmarshal on Any.Value
- // field in order to transform that into JSON, and that should have returned an error if a
- // required field is not set in the embedded message.
- //
- // When an Any message is being unmarshaled, the code will have invoked proto.Marshal on the
- // embedded message to store the serialized message in Any.Value field, and that should have
- // returned an error if a required field is not set.
- if _, ok := pb.(wkt); ok {
- return nil
- }
-
- v := reflect.ValueOf(pb)
- // Skip message if it is not a struct pointer.
- if v.Kind() != reflect.Ptr {
- return nil
- }
- v = v.Elem()
- if v.Kind() != reflect.Struct {
- return nil
- }
-
- for i := 0; i < v.NumField(); i++ {
- field := v.Field(i)
- sfield := v.Type().Field(i)
-
- if sfield.PkgPath != "" {
- // blank PkgPath means the field is exported; skip if not exported
- continue
- }
-
- if strings.HasPrefix(sfield.Name, "XXX_") {
- continue
- }
-
- // Oneof field is an interface implemented by wrapper structs containing the actual oneof
- // field, i.e. an interface containing &T{real_value}.
- if sfield.Tag.Get("protobuf_oneof") != "" {
- if field.Kind() != reflect.Interface {
- continue
- }
- v := field.Elem()
- if v.Kind() != reflect.Ptr || v.IsNil() {
- continue
- }
- v = v.Elem()
- if v.Kind() != reflect.Struct || v.NumField() < 1 {
- continue
- }
- field = v.Field(0)
- sfield = v.Type().Field(0)
- }
-
- protoTag := sfield.Tag.Get("protobuf")
- if protoTag == "" {
- continue
- }
- var prop proto.Properties
- prop.Init(sfield.Type, sfield.Name, protoTag, &sfield)
-
- switch field.Kind() {
- case reflect.Map:
- if field.IsNil() {
- continue
- }
- // Check each map value.
- keys := field.MapKeys()
- for _, k := range keys {
- v := field.MapIndex(k)
- if err := checkRequiredFieldsInValue(v); err != nil {
- return err
- }
- }
- case reflect.Slice:
- // Handle non-repeated type, e.g. bytes.
- if !prop.Repeated {
- if prop.Required && field.IsNil() {
- return fmt.Errorf("required field %q is not set", prop.Name)
- }
- continue
- }
-
- // Handle repeated type.
- if field.IsNil() {
- continue
- }
- // Check each slice item.
- for i := 0; i < field.Len(); i++ {
- v := field.Index(i)
- if err := checkRequiredFieldsInValue(v); err != nil {
- return err
- }
- }
- case reflect.Ptr:
- if field.IsNil() {
- if prop.Required {
- return fmt.Errorf("required field %q is not set", prop.Name)
- }
- continue
- }
- if err := checkRequiredFieldsInValue(field); err != nil {
- return err
- }
- }
- }
-
- // Handle proto2 extensions.
- for _, ext := range proto.RegisteredExtensions(pb) {
- if !proto.HasExtension(pb, ext) {
- continue
- }
- ep, err := proto.GetExtension(pb, ext)
- if err != nil {
- return err
- }
- err = checkRequiredFieldsInValue(reflect.ValueOf(ep))
- if err != nil {
- return err
- }
- }
-
- return nil
-}
-
-func checkRequiredFieldsInValue(v reflect.Value) error {
- if pm, ok := v.Interface().(proto.Message); ok {
- return checkRequiredFields(pm)
- }
- return nil
-}