1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#!/usr/bin/env python2.7
# Copyright 2017, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import multiprocessing
import os
import subprocess
import sys
import python_utils.jobset as jobset
import python_utils.start_port_server as start_port_server
flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph')
os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..'))
if not os.path.exists('reports'):
os.makedirs('reports')
port_server_port = 32766
start_port_server.start_port_server(port_server_port)
def fnize(s):
out = ''
for c in s:
if c in '<>, /':
if len(out) and out[-1] == '_': continue
out += '_'
else:
out += c
return out
# index html
index_html = """
<html>
<head>
<title>Microbenchmark Results</title>
</head>
<body>
"""
def heading(name):
global index_html
index_html += "<h1>%s</h1>\n" % name
def link(txt, tgt):
global index_html
index_html += "<p><a href=\"%s\">%s</a></p>\n" % (tgt, txt)
benchmarks = []
profile_analysis = []
cleanup = []
for bm_name in sys.argv[1:]:
# generate latency profiles
heading('Latency Profiles: %s' % bm_name)
subprocess.check_call(
['make', bm_name,
'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count()])
for line in subprocess.check_output(['bins/basicprof/%s' % bm_name,
'--benchmark_list_tests']).splitlines():
link(line, '%s.txt' % fnize(line))
benchmarks.append(
jobset.JobSpec(['bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line],
environ={'LATENCY_TRACE': '%s.trace' % fnize(line)}))
profile_analysis.append(
jobset.JobSpec([sys.executable,
'tools/profiling/latency_profile/profile_analyzer.py',
'--source', '%s.trace' % fnize(line), '--fmt', 'simple',
'--out', 'reports/%s.txt' % fnize(line)], timeout_seconds=None))
cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)]))
# periodically flush out the list of jobs: profile_analysis jobs at least
# consume upwards of five gigabytes of ram in some cases, and so analysing
# hundreds of them at once is impractical -- but we want at least some
# concurrency or the work takes too long
if len(benchmarks) >= min(4, multiprocessing.cpu_count()):
# run up to half the cpu count: each benchmark can use up to two cores
# (one for the microbenchmark, one for the data flush)
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),
add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
benchmarks = []
profile_analysis = []
cleanup = []
# run the remaining benchmarks that weren't flushed
if len(benchmarks):
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),
add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
# generate flamegraphs
heading('Flamegraphs: %s' % bm_name)
subprocess.check_call(
['make', bm_name,
'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count()])
for line in subprocess.check_output(['bins/mutrace/%s' % bm_name,
'--benchmark_list_tests']).splitlines():
subprocess.check_call(['sudo', 'perf', 'record', '-g', '-c', '1000',
'bins/mutrace/%s' % bm_name,
'--benchmark_filter=^%s$' % line,
'--benchmark_min_time=20'])
with open('/tmp/bm.perf', 'w') as f:
f.write(subprocess.check_output(['sudo', 'perf', 'script']))
with open('/tmp/bm.folded', 'w') as f:
f.write(subprocess.check_output([
'%s/stackcollapse-perf.pl' % flamegraph_dir, '/tmp/bm.perf']))
link(line, '%s.svg' % fnize(line))
with open('reports/%s.svg' % fnize(line), 'w') as f:
f.write(subprocess.check_output([
'%s/flamegraph.pl' % flamegraph_dir, '/tmp/bm.folded']))
index_html += "</body>\n</html>\n"
with open('reports/index.html', 'w') as f:
f.write(index_html)
|