aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/profiling/microbenchmarks/speedup.py
blob: 5a1ed3f2cf5094108ffa9a79f83292100958978e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2017, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
#     * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from scipy import stats
import math

_THRESHOLD = 0.00001

def scale(a, mul):
  return [x*mul for x in a]

def cmp(a, b):
  return stats.ttest_ind(a, b)

def speedup(new, old):
  s0, p0 = cmp(new, old)
  if math.isnan(p0): return 0
  if s0 == 0: return 0
  if p0 > _THRESHOLD: return 0
  if s0 < 0:
    pct = 1
    while pct < 101:
      sp, pp = cmp(new, scale(old, 1 - pct/100.0))
      if sp > 0: break
      if pp > _THRESHOLD: break
      pct += 1
    return -(pct - 1)
  else:
    pct = 1
    while pct < 100000:
      sp, pp = cmp(new, scale(old, 1 + pct/100.0))
      if sp < 0: break
      if pp > _THRESHOLD: break
      pct += 1
    return pct - 1

if __name__ == "__main__":
  new=[66034560.0, 126765693.0, 99074674.0, 98588433.0, 96731372.0, 110179725.0, 103802110.0, 101139800.0, 102357205.0, 99016353.0, 98840824.0, 99585632.0, 98791720.0, 96171521.0, 95327098.0, 95629704.0, 98209772.0, 99779411.0, 100182488.0, 98354192.0, 99644781.0, 98546709.0, 99019176.0, 99543014.0, 99077269.0, 98046601.0, 99319039.0, 98542572.0, 98886614.0, 72560968.0]
  old=[60423464.0, 71249570.0, 73213089.0, 73200055.0, 72911768.0, 72347798.0, 72494672.0, 72756976.0, 72116565.0, 71541342.0, 73442538.0, 74817383.0, 73007780.0, 72499062.0, 72404945.0, 71843504.0, 73245405.0, 72778304.0, 74004519.0, 73694464.0, 72919931.0, 72955481.0, 71583857.0, 71350467.0, 71836817.0, 70064115.0, 70355345.0, 72516202.0, 71716777.0, 71532266.0]
  print speedup(new, old)
  print speedup(old, new)