aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/profile_analyzer/profile_analyzer.py
blob: e5e9a28a92df18496ac59daa9371c95f3a3a6bb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python2.7
# Copyright 2015, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
#     * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""
Read GRPC basic profiles, analyze the data.

Usage:
  bins/basicprof/qps_smoke_test > log
  cat log | tools/profile_analyzer/profile_analyzer.py
"""


import collections
import itertools
import math
import re

# Create a regex to parse output of the C core basic profiler,
# as defined in src/core/profiling/basic_timers.c.
_RE_LINE = re.compile(r'GRPC_LAT_PROF ' +
                      r'([0-9]+\.[0-9]+) 0x([0-9a-f]+) ([{}.!]) ([0-9]+) ' +
                      r'([^ ]+) ([^ ]+) ([0-9]+)')

Entry = collections.namedtuple(
    'Entry',
    ['time', 'thread', 'type', 'tag', 'id', 'file', 'line'])


class ImportantMark(object):
  def __init__(self, entry, stack):
    self._entry = entry
    self._pre_stack = stack
    self._post_stack = list()
    self._n = len(stack)  # we'll also compute times to that many closing }s

  @property
  def entry(self):
    return self._entry

  @property
  def max_depth(self):
    return self._n

  def append_post_entry(self, post_entry):
    if self._n > 0 and post_entry.thread == self._entry.thread:
      self._post_stack.append(post_entry)
      self._n -= 1

  def get_deltas(self):
    pre_and_post_stacks = itertools.chain(self._pre_stack, self._post_stack)
    return collections.OrderedDict((stack_entry,
                                   abs(self._entry.time - stack_entry.time))
                                   for stack_entry in pre_and_post_stacks)


def print_block_statistics(block_times):
  print '{:<12s}  {:>12s} {:>12s} {:>12s} {:>12s}'.format(
          'Block tag', '50th p.', '90th p.', '95th p.', '99th p.')
  for tag, tag_times in sorted(block_times.iteritems()):
    times = sorted(tag_times)
    print '{:<12d}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
            tag, percentile(times, 50), percentile(times, 90),
            percentile(times, 95), percentile(times, 99))
  print

def print_grouped_imark_statistics(group_key, imarks_group):
  values = collections.OrderedDict()
  for imark in imarks_group:
    deltas = imark.get_deltas()
    for relative_entry, time_delta_us in deltas.iteritems():
      key = '{tag} {type} ({file}:{line})'.format(**relative_entry._asdict())
      l = values.setdefault(key, list())
      l.append(time_delta_us)

  print group_key
  print '{:<50s}  {:>12s} {:>12s} {:>12s} {:>12s}'.format(
        'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.')
  for key, time_values in values.iteritems():
    time_values = sorted(time_values)
    print '{:<50s}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
          key, percentile(time_values, 50), percentile(time_values, 90),
          percentile(time_values, 95), percentile(time_values, 99))
  print

def percentile(vals, percent):
  """ Calculates the interpolated percentile given a sorted sequence and a
  percent (in the usual 0-100 range)."""
  assert vals, "Empty input sequence."
  percent /= 100.0
  k = (len(vals)-1) * percent
  f = math.floor(k)
  c = math.ceil(k)
  if f == c:
      return vals[int(k)]
  # else, interpolate
  d0 = vals[int(f)] * (c-k)
  d1 = vals[int(c)] * (k-f)
  return d0 + d1

def entries(f):
  for line in f:
    m = _RE_LINE.match(line)
    if not m: continue
    yield Entry(time=float(m.group(1)),
                thread=m.group(2),
                type=m.group(3),
                tag=int(m.group(4)),
                id=m.group(5),
                file=m.group(6),
                line=m.group(7))

def main(f):
  percentiles = (50, 90, 95, 99)
  threads = collections.defaultdict(lambda: collections.defaultdict(list))
  times = collections.defaultdict(list)
  important_marks = collections.defaultdict(list)
  stack_depth = collections.defaultdict(int)
  for entry in entries(f):
    thread = threads[entry.thread]
    if entry.type == '{':
      thread[entry.tag].append(entry)
      stack_depth[entry.thread] += 1
    if entry.type == '!':
      # Save a snapshot of the current stack inside a new ImportantMark instance.
      # Get all entries _for any tag in the thread_.
      stack = [e for entries_for_tag in thread.itervalues()
                 for e in entries_for_tag]
      imark_group_key = '{tag}/{thread}@{file}:{line}'.format(**entry._asdict())
      important_marks[imark_group_key].append(ImportantMark(entry, stack))
    elif entry.type == '}':
      last = thread[entry.tag].pop()
      times[entry.tag].append(entry.time - last.time)
      # only access the last "depth" imarks for the tag.
      depth = stack_depth[entry.thread]
      for imarks_group in important_marks.itervalues():
        for imark in imarks_group[-depth:]:
          # if at a '}' deeper than where the current "imark" was found, ignore.
          if depth > imark.max_depth: continue
          imark.append_post_entry(entry)
      stack_depth[entry.thread] -= 1

  print
  print 'Block marks:'
  print '============'
  print_block_statistics(times)

  print
  print 'Important marks:'
  print '================'
  for group_key, imarks_group in important_marks.iteritems():
    print_grouped_imark_statistics(group_key, imarks_group)


if __name__ == '__main__':
  # If invoked without arguments, read off sys.stdin. If one argument is given,
  # take it as a file name and open it for reading.
  import sys
  f = sys.stdin
  if len(sys.argv) == 2:
    f = open(sys.argv[1], 'r')
  main(f)