1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
/*
*
* Copyright 2015, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TEST_QPS_INTERARRIVAL_H
#define TEST_QPS_INTERARRIVAL_H
#include <chrono>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <grpc++/config.h>
namespace grpc {
namespace testing {
// First create classes that define a random distribution
// Note that this code does not include C++-specific random distribution
// features supported in std::random. Although this would make this code easier,
// this code is required to serve as the template code for other language
// stacks. Thus, this code only uses a uniform distribution of doubles [0,1)
// and then provides the distribution functions itself.
class RandomDist {
public:
RandomDist() {}
virtual ~RandomDist() = 0;
// Argument to operator() is a uniform double in the range [0,1)
virtual double operator()(double uni) const = 0;
};
inline RandomDist::~RandomDist() {}
// ExpDist implements an exponential distribution, which is the
// interarrival distribution for a Poisson process. The parameter
// lambda is the mean rate of arrivals. This is the
// most useful distribution since it is actually additive and
// memoryless. It is a good representation of activity coming in from
// independent identical stationary sources. For more information,
// see http://en.wikipedia.org/wiki/Exponential_distribution
class ExpDist GRPC_FINAL : public RandomDist {
public:
explicit ExpDist(double lambda) : lambda_recip_(1.0 / lambda) {}
~ExpDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid NaN if uni is 0
return lambda_recip_ * (-log(1.0 - uni));
}
private:
double lambda_recip_;
};
// UniformDist implements a random distribution that has
// interarrival time uniformly spread between [lo,hi). The
// mean interarrival time is (lo+hi)/2. For more information,
// see http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
class UniformDist GRPC_FINAL : public RandomDist {
public:
UniformDist(double lo, double hi) : lo_(lo), range_(hi - lo) {}
~UniformDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE {
return uni * range_ + lo_;
}
private:
double lo_;
double range_;
};
// DetDist provides a random distribution with interarrival time
// of val. Note that this is not additive, so using this on multiple
// flows of control (threads within the same client or separate
// clients) will not preserve any deterministic interarrival gap across
// requests.
class DetDist GRPC_FINAL : public RandomDist {
public:
explicit DetDist(double val) : val_(val) {}
~DetDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE { return val_; }
private:
double val_;
};
// ParetoDist provides a random distribution with interarrival time
// spread according to a Pareto (heavy-tailed) distribution. In this
// model, many interarrival times are close to the base, but a sufficient
// number will be high (up to infinity) as to disturb the mean. It is a
// good representation of the response times of data center jobs. See
// http://en.wikipedia.org/wiki/Pareto_distribution
class ParetoDist GRPC_FINAL : public RandomDist {
public:
ParetoDist(double base, double alpha)
: base_(base), alpha_recip_(1.0 / alpha) {}
~ParetoDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid div by zero if uni is 0
return base_ / pow(1.0 - uni, alpha_recip_);
}
private:
double base_;
double alpha_recip_;
};
// A class library for generating pseudo-random interarrival times
// in an efficient re-entrant way. The random table is built at construction
// time, and each call must include the thread id of the invoker
class InterarrivalTimer {
public:
InterarrivalTimer() {}
void init(const RandomDist& r, int threads, int entries = 1000000) {
for (int i = 0; i < entries; i++) {
// rand is the only choice that is portable across POSIX and Windows
// and that supports new and old compilers
const double uniform_0_1 = rand() / RAND_MAX;
random_table_.push_back(
std::chrono::nanoseconds(static_cast<int64_t>(1e9 * r(uniform_0_1))));
}
// Now set up the thread positions
for (int i = 0; i < threads; i++) {
thread_posns_.push_back(random_table_.begin() + (entries * i) / threads);
}
}
virtual ~InterarrivalTimer(){};
std::chrono::nanoseconds operator()(int thread_num) {
auto ret = *(thread_posns_[thread_num]++);
if (thread_posns_[thread_num] == random_table_.end())
thread_posns_[thread_num] = random_table_.begin();
return ret;
}
private:
typedef std::vector<std::chrono::nanoseconds> time_table;
std::vector<time_table::const_iterator> thread_posns_;
time_table random_table_;
};
}
}
#endif
|