aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/lib/iomgr/timer_generic.cc
blob: 971d80d8bc539a5cceee163cb6c552d5b91f84b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 *
 * Copyright 2015 gRPC authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

#include "src/core/lib/iomgr/port.h"

#include <inttypes.h>

#ifdef GRPC_TIMER_USE_GENERIC

#include "src/core/lib/iomgr/timer.h"

#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/string_util.h>
#include <grpc/support/sync.h>
#include <grpc/support/tls.h>
#include <grpc/support/useful.h>
#include "src/core/lib/debug/trace.h"
#include "src/core/lib/iomgr/time_averaged_stats.h"
#include "src/core/lib/iomgr/timer_heap.h"
#include "src/core/lib/support/spinlock.h"

#define INVALID_HEAP_INDEX 0xffffffffu

#define LOG2_NUM_SHARDS 5
#define NUM_SHARDS (1 << LOG2_NUM_SHARDS)
#define ADD_DEADLINE_SCALE 0.33
#define MIN_QUEUE_WINDOW_DURATION 0.01
#define MAX_QUEUE_WINDOW_DURATION 1

extern "C" {
grpc_tracer_flag grpc_timer_trace = GRPC_TRACER_INITIALIZER(false, "timer");
grpc_tracer_flag grpc_timer_check_trace =
    GRPC_TRACER_INITIALIZER(false, "timer_check");
}

/* A "timer shard". Contains a 'heap' and a 'list' of timers. All timers with
 * deadlines earlier than 'queue_deadline" cap are maintained in the heap and
 * others are maintained in the list (unordered). This helps to keep the number
 * of elements in the heap low.
 *
 * The 'queue_deadline_cap' gets recomputed periodically based on the timer
 * stats maintained in 'stats' and the relevant timers are then moved from the
 * 'list' to 'heap'
 */
typedef struct {
  gpr_mu mu;
  grpc_time_averaged_stats stats;
  /* All and only timers with deadlines <= this will be in the heap. */
  gpr_atm queue_deadline_cap;
  /* The deadline of the next timer due in this shard */
  gpr_atm min_deadline;
  /* Index of this timer_shard in the g_shard_queue */
  uint32_t shard_queue_index;
  /* This holds all timers with deadlines < queue_deadline_cap. Timers in this
     list have the top bit of their deadline set to 0. */
  grpc_timer_heap heap;
  /* This holds timers whose deadline is >= queue_deadline_cap. */
  grpc_timer list;
} timer_shard;

/* Array of timer shards. Whenever a timer (grpc_timer *) is added, its address
 * is hashed to select the timer shard to add the timer to */
static timer_shard g_shards[NUM_SHARDS];

/* Maintains a sorted list of timer shards (sorted by their min_deadline, i.e
 * the deadline of the next timer in each shard).
 * Access to this is protected by g_shared_mutables.mu */
static timer_shard *g_shard_queue[NUM_SHARDS];

#ifndef NDEBUG

/* == Hash table for duplicate timer detection == */

#define NUM_HASH_BUCKETS 1009 /* Prime number close to 1000 */

static gpr_mu g_hash_mu[NUM_HASH_BUCKETS]; /* One mutex per bucket */
static grpc_timer *g_timer_ht[NUM_HASH_BUCKETS] = {NULL};

static void init_timer_ht() {
  for (int i = 0; i < NUM_HASH_BUCKETS; i++) {
    gpr_mu_init(&g_hash_mu[i]);
  }
}

static bool is_in_ht(grpc_timer *t) {
  size_t i = GPR_HASH_POINTER(t, NUM_HASH_BUCKETS);

  gpr_mu_lock(&g_hash_mu[i]);
  grpc_timer *p = g_timer_ht[i];
  while (p != NULL && p != t) {
    p = p->hash_table_next;
  }
  gpr_mu_unlock(&g_hash_mu[i]);

  return (p == t);
}

static void add_to_ht(grpc_timer *t) {
  GPR_ASSERT(!t->hash_table_next);
  size_t i = GPR_HASH_POINTER(t, NUM_HASH_BUCKETS);

  gpr_mu_lock(&g_hash_mu[i]);
  grpc_timer *p = g_timer_ht[i];
  while (p != NULL && p != t) {
    p = p->hash_table_next;
  }

  if (p == t) {
    grpc_closure *c = t->closure;
    gpr_log(GPR_ERROR,
            "** Duplicate timer (%p) being added. Closure: (%p), created at: "
            "(%s:%d), scheduled at: (%s:%d) **",
            t, c, c->file_created, c->line_created, c->file_initiated,
            c->line_initiated);
    abort();
  }

  /* Timer not present in the bucket. Insert at head of the list */
  t->hash_table_next = g_timer_ht[i];
  g_timer_ht[i] = t;
  gpr_mu_unlock(&g_hash_mu[i]);
}

static void remove_from_ht(grpc_timer *t) {
  size_t i = GPR_HASH_POINTER(t, NUM_HASH_BUCKETS);
  bool removed = false;

  gpr_mu_lock(&g_hash_mu[i]);
  if (g_timer_ht[i] == t) {
    g_timer_ht[i] = g_timer_ht[i]->hash_table_next;
    removed = true;
  } else if (g_timer_ht[i] != NULL) {
    grpc_timer *p = g_timer_ht[i];
    while (p->hash_table_next != NULL && p->hash_table_next != t) {
      p = p->hash_table_next;
    }

    if (p->hash_table_next == t) {
      p->hash_table_next = t->hash_table_next;
      removed = true;
    }
  }
  gpr_mu_unlock(&g_hash_mu[i]);

  if (!removed) {
    grpc_closure *c = t->closure;
    gpr_log(GPR_ERROR,
            "** Removing timer (%p) that is not added to hash table. Closure "
            "(%p), created at: (%s:%d), scheduled at: (%s:%d) **",
            t, c, c->file_created, c->line_created, c->file_initiated,
            c->line_initiated);
    abort();
  }

  t->hash_table_next = NULL;
}

/* If a timer is added to a timer shard (either heap or a list), it cannot
 * be pending. A timer is added to hash table only-if it is added to the
 * timer shard.
 * Therefore, if timer->pending is false, it cannot be in hash table */
static void validate_non_pending_timer(grpc_timer *t) {
  if (!t->pending && is_in_ht(t)) {
    grpc_closure *c = t->closure;
    gpr_log(GPR_ERROR,
            "** gpr_timer_cancel() called on a non-pending timer (%p) which "
            "is in the hash table. Closure: (%p), created at: (%s:%d), "
            "scheduled at: (%s:%d) **",
            t, c, c->file_created, c->line_created, c->file_initiated,
            c->line_initiated);
    abort();
  }
}

#define INIT_TIMER_HASH_TABLE() init_timer_ht()
#define ADD_TO_HASH_TABLE(t) add_to_ht((t))
#define REMOVE_FROM_HASH_TABLE(t) remove_from_ht((t))
#define VALIDATE_NON_PENDING_TIMER(t) validate_non_pending_timer((t))

#else

#define INIT_TIMER_HASH_TABLE()
#define ADD_TO_HASH_TABLE(t)
#define REMOVE_FROM_HASH_TABLE(t)
#define VALIDATE_NON_PENDING_TIMER(t)

#endif

/* Thread local variable that stores the deadline of the next timer the thread
 * has last-seen. This is an optimization to prevent the thread from checking
 * shared_mutables.min_timer (which requires acquiring shared_mutables.mu lock,
 * an expensive operation) */
GPR_TLS_DECL(g_last_seen_min_timer);

struct shared_mutables {
  /* The deadline of the next timer due across all timer shards */
  gpr_atm min_timer;
  /* Allow only one run_some_expired_timers at once */
  gpr_spinlock checker_mu;
  bool initialized;
  /* Protects g_shard_queue (and the shared_mutables struct itself) */
  gpr_mu mu;
} GPR_ALIGN_STRUCT(GPR_CACHELINE_SIZE);

static struct shared_mutables g_shared_mutables;

static gpr_clock_type g_clock_type;
static gpr_timespec g_start_time;

static gpr_atm saturating_add(gpr_atm a, gpr_atm b) {
  if (a > GPR_ATM_MAX - b) {
    return GPR_ATM_MAX;
  }
  return a + b;
}

static grpc_timer_check_result run_some_expired_timers(grpc_exec_ctx *exec_ctx,
                                                       gpr_atm now,
                                                       gpr_atm *next,
                                                       grpc_error *error);

static gpr_timespec dbl_to_ts(double d) {
  gpr_timespec ts;
  ts.tv_sec = (int64_t)d;
  ts.tv_nsec = (int32_t)(1e9 * (d - (double)ts.tv_sec));
  ts.clock_type = GPR_TIMESPAN;
  return ts;
}

static gpr_atm timespec_to_atm_round_up(gpr_timespec ts) {
  ts = gpr_time_sub(ts, g_start_time);
  double x = GPR_MS_PER_SEC * (double)ts.tv_sec +
             (double)ts.tv_nsec / GPR_NS_PER_MS +
             (double)(GPR_NS_PER_SEC - 1) / (double)GPR_NS_PER_SEC;
  if (x < 0) return 0;
  if (x > GPR_ATM_MAX) return GPR_ATM_MAX;
  return (gpr_atm)x;
}

static gpr_atm timespec_to_atm_round_down(gpr_timespec ts) {
  ts = gpr_time_sub(ts, g_start_time);
  double x =
      GPR_MS_PER_SEC * (double)ts.tv_sec + (double)ts.tv_nsec / GPR_NS_PER_MS;
  if (x < 0) return 0;
  if (x > GPR_ATM_MAX) return GPR_ATM_MAX;
  return (gpr_atm)x;
}

static gpr_timespec atm_to_timespec(gpr_atm x) {
  return gpr_time_add(g_start_time, dbl_to_ts((double)x / 1000.0));
}

static gpr_atm compute_min_deadline(timer_shard *shard) {
  return grpc_timer_heap_is_empty(&shard->heap)
             ? saturating_add(shard->queue_deadline_cap, 1)
             : grpc_timer_heap_top(&shard->heap)->deadline;
}

void grpc_timer_list_init(gpr_timespec now) {
  uint32_t i;

  g_shared_mutables.initialized = true;
  g_shared_mutables.checker_mu = GPR_SPINLOCK_INITIALIZER;
  gpr_mu_init(&g_shared_mutables.mu);
  g_clock_type = now.clock_type;
  g_start_time = now;
  g_shared_mutables.min_timer = timespec_to_atm_round_down(now);
  gpr_tls_init(&g_last_seen_min_timer);
  gpr_tls_set(&g_last_seen_min_timer, 0);
  grpc_register_tracer(&grpc_timer_trace);
  grpc_register_tracer(&grpc_timer_check_trace);

  for (i = 0; i < NUM_SHARDS; i++) {
    timer_shard *shard = &g_shards[i];
    gpr_mu_init(&shard->mu);
    grpc_time_averaged_stats_init(&shard->stats, 1.0 / ADD_DEADLINE_SCALE, 0.1,
                                  0.5);
    shard->queue_deadline_cap = g_shared_mutables.min_timer;
    shard->shard_queue_index = i;
    grpc_timer_heap_init(&shard->heap);
    shard->list.next = shard->list.prev = &shard->list;
    shard->min_deadline = compute_min_deadline(shard);
    g_shard_queue[i] = shard;
  }

  INIT_TIMER_HASH_TABLE();
}

void grpc_timer_list_shutdown(grpc_exec_ctx *exec_ctx) {
  int i;
  run_some_expired_timers(
      exec_ctx, GPR_ATM_MAX, NULL,
      GRPC_ERROR_CREATE_FROM_STATIC_STRING("Timer list shutdown"));
  for (i = 0; i < NUM_SHARDS; i++) {
    timer_shard *shard = &g_shards[i];
    gpr_mu_destroy(&shard->mu);
    grpc_timer_heap_destroy(&shard->heap);
  }
  gpr_mu_destroy(&g_shared_mutables.mu);
  gpr_tls_destroy(&g_last_seen_min_timer);
  g_shared_mutables.initialized = false;
}

static double ts_to_dbl(gpr_timespec ts) {
  return (double)ts.tv_sec + 1e-9 * ts.tv_nsec;
}

/* returns true if the first element in the list */
static void list_join(grpc_timer *head, grpc_timer *timer) {
  timer->next = head;
  timer->prev = head->prev;
  timer->next->prev = timer->prev->next = timer;
}

static void list_remove(grpc_timer *timer) {
  timer->next->prev = timer->prev;
  timer->prev->next = timer->next;
}

static void swap_adjacent_shards_in_queue(uint32_t first_shard_queue_index) {
  timer_shard *temp;
  temp = g_shard_queue[first_shard_queue_index];
  g_shard_queue[first_shard_queue_index] =
      g_shard_queue[first_shard_queue_index + 1];
  g_shard_queue[first_shard_queue_index + 1] = temp;
  g_shard_queue[first_shard_queue_index]->shard_queue_index =
      first_shard_queue_index;
  g_shard_queue[first_shard_queue_index + 1]->shard_queue_index =
      first_shard_queue_index + 1;
}

static void note_deadline_change(timer_shard *shard) {
  while (shard->shard_queue_index > 0 &&
         shard->min_deadline <
             g_shard_queue[shard->shard_queue_index - 1]->min_deadline) {
    swap_adjacent_shards_in_queue(shard->shard_queue_index - 1);
  }
  while (shard->shard_queue_index < NUM_SHARDS - 1 &&
         shard->min_deadline >
             g_shard_queue[shard->shard_queue_index + 1]->min_deadline) {
    swap_adjacent_shards_in_queue(shard->shard_queue_index);
  }
}

void grpc_timer_init_unset(grpc_timer *timer) { timer->pending = false; }

void grpc_timer_init(grpc_exec_ctx *exec_ctx, grpc_timer *timer,
                     gpr_timespec deadline, grpc_closure *closure,
                     gpr_timespec now) {
  int is_first_timer = 0;
  timer_shard *shard = &g_shards[GPR_HASH_POINTER(timer, NUM_SHARDS)];
  GPR_ASSERT(deadline.clock_type == g_clock_type);
  GPR_ASSERT(now.clock_type == g_clock_type);
  timer->closure = closure;
  gpr_atm deadline_atm = timer->deadline = timespec_to_atm_round_up(deadline);

#ifndef NDEBUG
  timer->hash_table_next = NULL;
#endif

  if (GRPC_TRACER_ON(grpc_timer_trace)) {
    gpr_log(GPR_DEBUG, "TIMER %p: SET %" PRId64 ".%09d [%" PRIdPTR
                       "] now %" PRId64 ".%09d [%" PRIdPTR "] call %p[%p]",
            timer, deadline.tv_sec, deadline.tv_nsec, deadline_atm, now.tv_sec,
            now.tv_nsec, timespec_to_atm_round_down(now), closure, closure->cb);
  }

  if (!g_shared_mutables.initialized) {
    timer->pending = false;
    GRPC_CLOSURE_SCHED(exec_ctx, timer->closure,
                       GRPC_ERROR_CREATE_FROM_STATIC_STRING(
                           "Attempt to create timer before initialization"));
    return;
  }

  gpr_mu_lock(&shard->mu);
  timer->pending = true;
  if (gpr_time_cmp(deadline, now) <= 0) {
    timer->pending = false;
    GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_NONE);
    gpr_mu_unlock(&shard->mu);
    /* early out */
    return;
  }

  grpc_time_averaged_stats_add_sample(&shard->stats,
                                      ts_to_dbl(gpr_time_sub(deadline, now)));

  ADD_TO_HASH_TABLE(timer);

  if (deadline_atm < shard->queue_deadline_cap) {
    is_first_timer = grpc_timer_heap_add(&shard->heap, timer);
  } else {
    timer->heap_index = INVALID_HEAP_INDEX;
    list_join(&shard->list, timer);
  }
  if (GRPC_TRACER_ON(grpc_timer_trace)) {
    gpr_log(GPR_DEBUG, "  .. add to shard %d with queue_deadline_cap=%" PRIdPTR
                       " => is_first_timer=%s",
            (int)(shard - g_shards), shard->queue_deadline_cap,
            is_first_timer ? "true" : "false");
  }
  gpr_mu_unlock(&shard->mu);

  /* Deadline may have decreased, we need to adjust the master queue.  Note
     that there is a potential racy unlocked region here.  There could be a
     reordering of multiple grpc_timer_init calls, at this point, but the < test
     below should ensure that we err on the side of caution.  There could
     also be a race with grpc_timer_check, which might beat us to the lock.  In
     that case, it is possible that the timer that we added will have already
     run by the time we hold the lock, but that too is a safe error.
     Finally, it's possible that the grpc_timer_check that intervened failed to
     trigger the new timer because the min_deadline hadn't yet been reduced.
     In that case, the timer will simply have to wait for the next
     grpc_timer_check. */
  if (is_first_timer) {
    gpr_mu_lock(&g_shared_mutables.mu);
    if (GRPC_TRACER_ON(grpc_timer_trace)) {
      gpr_log(GPR_DEBUG, "  .. old shard min_deadline=%" PRIdPTR,
              shard->min_deadline);
    }
    if (deadline_atm < shard->min_deadline) {
      gpr_atm old_min_deadline = g_shard_queue[0]->min_deadline;
      shard->min_deadline = deadline_atm;
      note_deadline_change(shard);
      if (shard->shard_queue_index == 0 && deadline_atm < old_min_deadline) {
        gpr_atm_no_barrier_store(&g_shared_mutables.min_timer, deadline_atm);
        grpc_kick_poller();
      }
    }
    gpr_mu_unlock(&g_shared_mutables.mu);
  }
}

void grpc_timer_consume_kick(void) {
  /* force re-evaluation of last seeen min */
  gpr_tls_set(&g_last_seen_min_timer, 0);
}

void grpc_timer_cancel(grpc_exec_ctx *exec_ctx, grpc_timer *timer) {
  if (!g_shared_mutables.initialized) {
    /* must have already been cancelled, also the shard mutex is invalid */
    return;
  }

  timer_shard *shard = &g_shards[GPR_HASH_POINTER(timer, NUM_SHARDS)];
  gpr_mu_lock(&shard->mu);
  if (GRPC_TRACER_ON(grpc_timer_trace)) {
    gpr_log(GPR_DEBUG, "TIMER %p: CANCEL pending=%s", timer,
            timer->pending ? "true" : "false");
  }

  if (timer->pending) {
    REMOVE_FROM_HASH_TABLE(timer);

    GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_CANCELLED);
    timer->pending = false;
    if (timer->heap_index == INVALID_HEAP_INDEX) {
      list_remove(timer);
    } else {
      grpc_timer_heap_remove(&shard->heap, timer);
    }
  } else {
    VALIDATE_NON_PENDING_TIMER(timer);
  }
  gpr_mu_unlock(&shard->mu);
}

/* Rebalances the timer shard by computing a new 'queue_deadline_cap' and moving
   all relevant timers in shard->list (i.e timers with deadlines earlier than
   'queue_deadline_cap') into into shard->heap.
   Returns 'true' if shard->heap has atleast ONE element
   REQUIRES: shard->mu locked */
static int refill_heap(timer_shard *shard, gpr_atm now) {
  /* Compute the new queue window width and bound by the limits: */
  double computed_deadline_delta =
      grpc_time_averaged_stats_update_average(&shard->stats) *
      ADD_DEADLINE_SCALE;
  double deadline_delta =
      GPR_CLAMP(computed_deadline_delta, MIN_QUEUE_WINDOW_DURATION,
                MAX_QUEUE_WINDOW_DURATION);
  grpc_timer *timer, *next;

  /* Compute the new cap and put all timers under it into the queue: */
  shard->queue_deadline_cap =
      saturating_add(GPR_MAX(now, shard->queue_deadline_cap),
                     (gpr_atm)(deadline_delta * 1000.0));

  if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
    gpr_log(GPR_DEBUG, "  .. shard[%d]->queue_deadline_cap --> %" PRIdPTR,
            (int)(shard - g_shards), shard->queue_deadline_cap);
  }
  for (timer = shard->list.next; timer != &shard->list; timer = next) {
    next = timer->next;

    if (timer->deadline < shard->queue_deadline_cap) {
      if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
        gpr_log(GPR_DEBUG, "  .. add timer with deadline %" PRIdPTR " to heap",
                timer->deadline);
      }
      list_remove(timer);
      grpc_timer_heap_add(&shard->heap, timer);
    }
  }
  return !grpc_timer_heap_is_empty(&shard->heap);
}

/* This pops the next non-cancelled timer with deadline <= now from the
   queue, or returns NULL if there isn't one.
   REQUIRES: shard->mu locked */
static grpc_timer *pop_one(timer_shard *shard, gpr_atm now) {
  grpc_timer *timer;
  for (;;) {
    if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
      gpr_log(GPR_DEBUG, "  .. shard[%d]: heap_empty=%s",
              (int)(shard - g_shards),
              grpc_timer_heap_is_empty(&shard->heap) ? "true" : "false");
    }
    if (grpc_timer_heap_is_empty(&shard->heap)) {
      if (now < shard->queue_deadline_cap) return NULL;
      if (!refill_heap(shard, now)) return NULL;
    }
    timer = grpc_timer_heap_top(&shard->heap);
    if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
      gpr_log(GPR_DEBUG,
              "  .. check top timer deadline=%" PRIdPTR " now=%" PRIdPTR,
              timer->deadline, now);
    }
    if (timer->deadline > now) return NULL;
    if (GRPC_TRACER_ON(grpc_timer_trace)) {
      gpr_log(GPR_DEBUG, "TIMER %p: FIRE %" PRIdPTR "ms late", timer,
              now - timer->deadline);
    }
    timer->pending = false;
    grpc_timer_heap_pop(&shard->heap);
    return timer;
  }
}

/* REQUIRES: shard->mu unlocked */
static size_t pop_timers(grpc_exec_ctx *exec_ctx, timer_shard *shard,
                         gpr_atm now, gpr_atm *new_min_deadline,
                         grpc_error *error) {
  size_t n = 0;
  grpc_timer *timer;
  gpr_mu_lock(&shard->mu);
  while ((timer = pop_one(shard, now))) {
    REMOVE_FROM_HASH_TABLE(timer);
    GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_REF(error));
    n++;
  }
  *new_min_deadline = compute_min_deadline(shard);
  gpr_mu_unlock(&shard->mu);
  return n;
}

static grpc_timer_check_result run_some_expired_timers(grpc_exec_ctx *exec_ctx,
                                                       gpr_atm now,
                                                       gpr_atm *next,
                                                       grpc_error *error) {
  grpc_timer_check_result result = GRPC_TIMERS_NOT_CHECKED;

  gpr_atm min_timer = gpr_atm_no_barrier_load(&g_shared_mutables.min_timer);
  gpr_tls_set(&g_last_seen_min_timer, min_timer);
  if (now < min_timer) {
    if (next != NULL) *next = GPR_MIN(*next, min_timer);
    return GRPC_TIMERS_CHECKED_AND_EMPTY;
  }

  if (gpr_spinlock_trylock(&g_shared_mutables.checker_mu)) {
    gpr_mu_lock(&g_shared_mutables.mu);
    result = GRPC_TIMERS_CHECKED_AND_EMPTY;

    if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
      gpr_log(GPR_DEBUG, "  .. shard[%d]->min_deadline = %" PRIdPTR,
              (int)(g_shard_queue[0] - g_shards),
              g_shard_queue[0]->min_deadline);
    }

    while (g_shard_queue[0]->min_deadline < now ||
           (now != GPR_ATM_MAX && g_shard_queue[0]->min_deadline == now)) {
      gpr_atm new_min_deadline;

      /* For efficiency, we pop as many available timers as we can from the
         shard.  This may violate perfect timer deadline ordering, but that
         shouldn't be a big deal because we don't make ordering guarantees. */
      if (pop_timers(exec_ctx, g_shard_queue[0], now, &new_min_deadline,
                     error) > 0) {
        result = GRPC_TIMERS_FIRED;
      }

      if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
        gpr_log(GPR_DEBUG,
                "  .. result --> %d"
                ", shard[%d]->min_deadline %" PRIdPTR " --> %" PRIdPTR
                ", now=%" PRIdPTR,
                result, (int)(g_shard_queue[0] - g_shards),
                g_shard_queue[0]->min_deadline, new_min_deadline, now);
      }

      /* An grpc_timer_init() on the shard could intervene here, adding a new
         timer that is earlier than new_min_deadline.  However,
         grpc_timer_init() will block on the master_lock before it can call
         set_min_deadline, so this one will complete first and then the Addtimer
         will reduce the min_deadline (perhaps unnecessarily). */
      g_shard_queue[0]->min_deadline = new_min_deadline;
      note_deadline_change(g_shard_queue[0]);
    }

    if (next) {
      *next = GPR_MIN(*next, g_shard_queue[0]->min_deadline);
    }

    gpr_atm_no_barrier_store(&g_shared_mutables.min_timer,
                             g_shard_queue[0]->min_deadline);
    gpr_mu_unlock(&g_shared_mutables.mu);
    gpr_spinlock_unlock(&g_shared_mutables.checker_mu);
  }

  GRPC_ERROR_UNREF(error);

  return result;
}

grpc_timer_check_result grpc_timer_check(grpc_exec_ctx *exec_ctx,
                                         gpr_timespec now, gpr_timespec *next) {
  // prelude
  GPR_ASSERT(now.clock_type == g_clock_type);
  gpr_atm now_atm = timespec_to_atm_round_down(now);

  /* fetch from a thread-local first: this avoids contention on a globally
     mutable cacheline in the common case */
  gpr_atm min_timer = gpr_tls_get(&g_last_seen_min_timer);
  if (now_atm < min_timer) {
    if (next != NULL) {
      *next =
          atm_to_timespec(GPR_MIN(timespec_to_atm_round_up(*next), min_timer));
    }
    if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
      gpr_log(GPR_DEBUG,
              "TIMER CHECK SKIP: now_atm=%" PRIdPTR " min_timer=%" PRIdPTR,
              now_atm, min_timer);
    }
    return GRPC_TIMERS_CHECKED_AND_EMPTY;
  }

  grpc_error *shutdown_error =
      gpr_time_cmp(now, gpr_inf_future(now.clock_type)) != 0
          ? GRPC_ERROR_NONE
          : GRPC_ERROR_CREATE_FROM_STATIC_STRING("Shutting down timer system");

  // tracing
  if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
    char *next_str;
    if (next == NULL) {
      next_str = gpr_strdup("NULL");
    } else {
      gpr_asprintf(&next_str, "%" PRId64 ".%09d [%" PRIdPTR "]", next->tv_sec,
                   next->tv_nsec, timespec_to_atm_round_down(*next));
    }
    gpr_log(GPR_DEBUG, "TIMER CHECK BEGIN: now=%" PRId64 ".%09d [%" PRIdPTR
                       "] next=%s tls_min=%" PRIdPTR " glob_min=%" PRIdPTR,
            now.tv_sec, now.tv_nsec, now_atm, next_str,
            gpr_tls_get(&g_last_seen_min_timer),
            gpr_atm_no_barrier_load(&g_shared_mutables.min_timer));
    gpr_free(next_str);
  }
  // actual code
  grpc_timer_check_result r;
  gpr_atm next_atm;
  if (next == NULL) {
    r = run_some_expired_timers(exec_ctx, now_atm, NULL, shutdown_error);
  } else {
    next_atm = timespec_to_atm_round_down(*next);
    r = run_some_expired_timers(exec_ctx, now_atm, &next_atm, shutdown_error);
    *next = atm_to_timespec(next_atm);
  }
  // tracing
  if (GRPC_TRACER_ON(grpc_timer_check_trace)) {
    char *next_str;
    if (next == NULL) {
      next_str = gpr_strdup("NULL");
    } else {
      gpr_asprintf(&next_str, "%" PRId64 ".%09d [%" PRIdPTR "]", next->tv_sec,
                   next->tv_nsec, next_atm);
    }
    gpr_log(GPR_DEBUG, "TIMER CHECK END: r=%d; next=%s", r, next_str);
    gpr_free(next_str);
  }
  return r;
}

#endif /* GRPC_TIMER_USE_GENERIC */