1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
*
* Copyright 2016 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "src/core/lib/iomgr/combiner.h"
#include <assert.h>
#include <string.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include "src/core/lib/iomgr/executor.h"
#include "src/core/lib/profiling/timers.h"
grpc_tracer_flag grpc_combiner_trace = GRPC_TRACER_INITIALIZER(false);
#define GRPC_COMBINER_TRACE(fn) \
do { \
if (GRPC_TRACER_ON(grpc_combiner_trace)) { \
fn; \
} \
} while (0)
#define STATE_UNORPHANED 1
#define STATE_ELEM_COUNT_LOW_BIT 2
struct grpc_combiner {
grpc_combiner *next_combiner_on_this_exec_ctx;
grpc_closure_scheduler scheduler;
grpc_closure_scheduler finally_scheduler;
gpr_mpscq queue;
// either:
// a pointer to the initiating exec ctx if that is the only exec_ctx that has
// ever queued to this combiner, or NULL. If this is non-null, it's not
// dereferencable (since the initiating exec_ctx may have gone out of scope)
gpr_atm initiating_exec_ctx_or_null;
// state is:
// lower bit - zero if orphaned (STATE_UNORPHANED)
// other bits - number of items queued on the lock (STATE_ELEM_COUNT_LOW_BIT)
gpr_atm state;
bool time_to_execute_final_list;
grpc_closure_list final_list;
grpc_closure offload;
gpr_refcount refs;
};
static void combiner_exec(grpc_exec_ctx *exec_ctx, grpc_closure *closure,
grpc_error *error);
static void combiner_finally_exec(grpc_exec_ctx *exec_ctx,
grpc_closure *closure, grpc_error *error);
static const grpc_closure_scheduler_vtable scheduler = {
combiner_exec, combiner_exec, "combiner:immediately"};
static const grpc_closure_scheduler_vtable finally_scheduler = {
combiner_finally_exec, combiner_finally_exec, "combiner:finally"};
static void offload(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error);
grpc_combiner *grpc_combiner_create(void) {
grpc_combiner *lock = gpr_malloc(sizeof(*lock));
gpr_ref_init(&lock->refs, 1);
lock->next_combiner_on_this_exec_ctx = NULL;
lock->time_to_execute_final_list = false;
lock->scheduler.vtable = &scheduler;
lock->finally_scheduler.vtable = &finally_scheduler;
gpr_atm_no_barrier_store(&lock->state, STATE_UNORPHANED);
gpr_mpscq_init(&lock->queue);
grpc_closure_list_init(&lock->final_list);
GRPC_CLOSURE_INIT(&lock->offload, offload, lock, grpc_executor_scheduler);
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p create", lock));
return lock;
}
static void really_destroy(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) {
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p really_destroy", lock));
GPR_ASSERT(gpr_atm_no_barrier_load(&lock->state) == 0);
gpr_mpscq_destroy(&lock->queue);
gpr_free(lock);
}
static void start_destroy(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) {
gpr_atm old_state = gpr_atm_full_fetch_add(&lock->state, -STATE_UNORPHANED);
GRPC_COMBINER_TRACE(gpr_log(
GPR_DEBUG, "C:%p really_destroy old_state=%" PRIdPTR, lock, old_state));
if (old_state == 1) {
really_destroy(exec_ctx, lock);
}
}
#ifndef NDEBUG
#define GRPC_COMBINER_DEBUG_SPAM(op, delta) \
if (GRPC_TRACER_ON(grpc_combiner_trace)) { \
gpr_log(file, line, GPR_LOG_SEVERITY_DEBUG, \
"C:%p %s %" PRIdPTR " --> %" PRIdPTR " %s", lock, (op), \
gpr_atm_no_barrier_load(&lock->refs.count), \
gpr_atm_no_barrier_load(&lock->refs.count) + (delta), reason); \
}
#else
#define GRPC_COMBINER_DEBUG_SPAM(op, delta)
#endif
void grpc_combiner_unref(grpc_exec_ctx *exec_ctx,
grpc_combiner *lock GRPC_COMBINER_DEBUG_ARGS) {
GRPC_COMBINER_DEBUG_SPAM("UNREF", -1);
if (gpr_unref(&lock->refs)) {
start_destroy(exec_ctx, lock);
}
}
grpc_combiner *grpc_combiner_ref(grpc_combiner *lock GRPC_COMBINER_DEBUG_ARGS) {
GRPC_COMBINER_DEBUG_SPAM(" REF", 1);
gpr_ref(&lock->refs);
return lock;
}
static void push_last_on_exec_ctx(grpc_exec_ctx *exec_ctx,
grpc_combiner *lock) {
lock->next_combiner_on_this_exec_ctx = NULL;
if (exec_ctx->active_combiner == NULL) {
exec_ctx->active_combiner = exec_ctx->last_combiner = lock;
} else {
exec_ctx->last_combiner->next_combiner_on_this_exec_ctx = lock;
exec_ctx->last_combiner = lock;
}
}
static void push_first_on_exec_ctx(grpc_exec_ctx *exec_ctx,
grpc_combiner *lock) {
lock->next_combiner_on_this_exec_ctx = exec_ctx->active_combiner;
exec_ctx->active_combiner = lock;
if (lock->next_combiner_on_this_exec_ctx == NULL) {
exec_ctx->last_combiner = lock;
}
}
#define COMBINER_FROM_CLOSURE_SCHEDULER(closure, scheduler_name) \
((grpc_combiner *)(((char *)((closure)->scheduler)) - \
offsetof(grpc_combiner, scheduler_name)))
static void combiner_exec(grpc_exec_ctx *exec_ctx, grpc_closure *cl,
grpc_error *error) {
GPR_TIMER_BEGIN("combiner.execute", 0);
grpc_combiner *lock = COMBINER_FROM_CLOSURE_SCHEDULER(cl, scheduler);
gpr_atm last = gpr_atm_full_fetch_add(&lock->state, STATE_ELEM_COUNT_LOW_BIT);
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG,
"C:%p grpc_combiner_execute c=%p last=%" PRIdPTR,
lock, cl, last));
if (last == 1) {
gpr_atm_no_barrier_store(&lock->initiating_exec_ctx_or_null,
(gpr_atm)exec_ctx);
// first element on this list: add it to the list of combiner locks
// executing within this exec_ctx
push_last_on_exec_ctx(exec_ctx, lock);
} else {
// there may be a race with setting here: if that happens, we may delay
// offload for one or two actions, and that's fine
gpr_atm initiator =
gpr_atm_no_barrier_load(&lock->initiating_exec_ctx_or_null);
if (initiator != 0 && initiator != (gpr_atm)exec_ctx) {
gpr_atm_no_barrier_store(&lock->initiating_exec_ctx_or_null, 0);
}
}
GPR_ASSERT(last & STATE_UNORPHANED); // ensure lock has not been destroyed
assert(cl->cb);
cl->error_data.error = error;
gpr_mpscq_push(&lock->queue, &cl->next_data.atm_next);
GPR_TIMER_END("combiner.execute", 0);
}
static void move_next(grpc_exec_ctx *exec_ctx) {
exec_ctx->active_combiner =
exec_ctx->active_combiner->next_combiner_on_this_exec_ctx;
if (exec_ctx->active_combiner == NULL) {
exec_ctx->last_combiner = NULL;
}
}
static void offload(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) {
grpc_combiner *lock = arg;
push_last_on_exec_ctx(exec_ctx, lock);
}
static void queue_offload(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) {
move_next(exec_ctx);
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p queue_offload", lock));
GRPC_CLOSURE_SCHED(exec_ctx, &lock->offload, GRPC_ERROR_NONE);
}
bool grpc_combiner_continue_exec_ctx(grpc_exec_ctx *exec_ctx) {
GPR_TIMER_BEGIN("combiner.continue_exec_ctx", 0);
grpc_combiner *lock = exec_ctx->active_combiner;
if (lock == NULL) {
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return false;
}
bool contended =
gpr_atm_no_barrier_load(&lock->initiating_exec_ctx_or_null) == 0;
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG,
"C:%p grpc_combiner_continue_exec_ctx "
"contended=%d "
"exec_ctx_ready_to_finish=%d "
"time_to_execute_final_list=%d",
lock, contended,
grpc_exec_ctx_ready_to_finish(exec_ctx),
lock->time_to_execute_final_list));
if (contended && grpc_exec_ctx_ready_to_finish(exec_ctx) &&
grpc_executor_is_threaded()) {
GPR_TIMER_MARK("offload_from_finished_exec_ctx", 0);
// this execution context wants to move on: schedule remaining work to be
// picked up on the executor
queue_offload(exec_ctx, lock);
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return true;
}
if (!lock->time_to_execute_final_list ||
// peek to see if something new has shown up, and execute that with
// priority
(gpr_atm_acq_load(&lock->state) >> 1) > 1) {
gpr_mpscq_node *n = gpr_mpscq_pop(&lock->queue);
GRPC_COMBINER_TRACE(
gpr_log(GPR_DEBUG, "C:%p maybe_finish_one n=%p", lock, n));
if (n == NULL) {
// queue is in an inconsistent state: use this as a cue that we should
// go off and do something else for a while (and come back later)
GPR_TIMER_MARK("delay_busy", 0);
queue_offload(exec_ctx, lock);
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return true;
}
GPR_TIMER_BEGIN("combiner.exec1", 0);
grpc_closure *cl = (grpc_closure *)n;
grpc_error *cl_err = cl->error_data.error;
#ifndef NDEBUG
cl->scheduled = false;
#endif
cl->cb(exec_ctx, cl->cb_arg, cl_err);
GRPC_ERROR_UNREF(cl_err);
GPR_TIMER_END("combiner.exec1", 0);
} else {
grpc_closure *c = lock->final_list.head;
GPR_ASSERT(c != NULL);
grpc_closure_list_init(&lock->final_list);
int loops = 0;
while (c != NULL) {
GPR_TIMER_BEGIN("combiner.exec_1final", 0);
GRPC_COMBINER_TRACE(
gpr_log(GPR_DEBUG, "C:%p execute_final[%d] c=%p", lock, loops, c));
grpc_closure *next = c->next_data.next;
grpc_error *error = c->error_data.error;
#ifndef NDEBUG
c->scheduled = false;
#endif
c->cb(exec_ctx, c->cb_arg, error);
GRPC_ERROR_UNREF(error);
c = next;
GPR_TIMER_END("combiner.exec_1final", 0);
}
}
GPR_TIMER_MARK("unref", 0);
move_next(exec_ctx);
lock->time_to_execute_final_list = false;
gpr_atm old_state =
gpr_atm_full_fetch_add(&lock->state, -STATE_ELEM_COUNT_LOW_BIT);
GRPC_COMBINER_TRACE(
gpr_log(GPR_DEBUG, "C:%p finish old_state=%" PRIdPTR, lock, old_state));
// Define a macro to ease readability of the following switch statement.
#define OLD_STATE_WAS(orphaned, elem_count) \
(((orphaned) ? 0 : STATE_UNORPHANED) | \
((elem_count)*STATE_ELEM_COUNT_LOW_BIT))
// Depending on what the previous state was, we need to perform different
// actions.
switch (old_state) {
default:
// we have multiple queued work items: just continue executing them
break;
case OLD_STATE_WAS(false, 2):
case OLD_STATE_WAS(true, 2):
// we're down to one queued item: if it's the final list we should do that
if (!grpc_closure_list_empty(lock->final_list)) {
lock->time_to_execute_final_list = true;
}
break;
case OLD_STATE_WAS(false, 1):
// had one count, one unorphaned --> unlocked unorphaned
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return true;
case OLD_STATE_WAS(true, 1):
// and one count, one orphaned --> unlocked and orphaned
really_destroy(exec_ctx, lock);
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return true;
case OLD_STATE_WAS(false, 0):
case OLD_STATE_WAS(true, 0):
// these values are illegal - representing an already unlocked or
// deleted lock
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
GPR_UNREACHABLE_CODE(return true);
}
push_first_on_exec_ctx(exec_ctx, lock);
GPR_TIMER_END("combiner.continue_exec_ctx", 0);
return true;
}
static void enqueue_finally(grpc_exec_ctx *exec_ctx, void *closure,
grpc_error *error);
static void combiner_finally_exec(grpc_exec_ctx *exec_ctx,
grpc_closure *closure, grpc_error *error) {
grpc_combiner *lock =
COMBINER_FROM_CLOSURE_SCHEDULER(closure, finally_scheduler);
GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG,
"C:%p grpc_combiner_execute_finally c=%p; ac=%p",
lock, closure, exec_ctx->active_combiner));
GPR_TIMER_BEGIN("combiner.execute_finally", 0);
if (exec_ctx->active_combiner != lock) {
GPR_TIMER_MARK("slowpath", 0);
GRPC_CLOSURE_SCHED(exec_ctx,
GRPC_CLOSURE_CREATE(enqueue_finally, closure,
grpc_combiner_scheduler(lock)),
error);
GPR_TIMER_END("combiner.execute_finally", 0);
return;
}
if (grpc_closure_list_empty(lock->final_list)) {
gpr_atm_full_fetch_add(&lock->state, STATE_ELEM_COUNT_LOW_BIT);
}
grpc_closure_list_append(&lock->final_list, closure, error);
GPR_TIMER_END("combiner.execute_finally", 0);
}
static void enqueue_finally(grpc_exec_ctx *exec_ctx, void *closure,
grpc_error *error) {
combiner_finally_exec(exec_ctx, closure, GRPC_ERROR_REF(error));
}
grpc_closure_scheduler *grpc_combiner_scheduler(grpc_combiner *combiner) {
return &combiner->scheduler;
}
grpc_closure_scheduler *grpc_combiner_finally_scheduler(
grpc_combiner *combiner) {
return &combiner->finally_scheduler;
}
|