1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
*
* Copyright 2016 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef GRPC_CORE_LIB_GPRPP_MANUAL_CONSTRUCTOR_H
#define GRPC_CORE_LIB_GPRPP_MANUAL_CONSTRUCTOR_H
// manually construct a region of memory with some type
#include <stddef.h>
#include <stdlib.h>
#include <new>
#include <type_traits>
#include <utility>
#include <grpc/support/log.h>
namespace grpc_core {
// this contains templated helpers needed to implement the ManualConstructors
// in this file.
namespace manual_ctor_impl {
// is_one_of returns true it a class, Member, is present in a variadic list of
// classes, List.
template <class Member, class... List>
class is_one_of;
template <class Member, class... List>
class is_one_of<Member, Member, List...> {
public:
static constexpr const bool value = true;
};
template <class Member, class A, class... List>
class is_one_of<Member, A, List...> {
public:
static constexpr const bool value = is_one_of<Member, List...>::value;
};
template <class Member>
class is_one_of<Member> {
public:
static constexpr const bool value = false;
};
// max_size_of returns sizeof(Type) for the largest type in the variadic list
// of classes, Types.
template <class... Types>
class max_size_of;
template <class A>
class max_size_of<A> {
public:
static constexpr const size_t value = sizeof(A);
};
template <class A, class... B>
class max_size_of<A, B...> {
public:
static constexpr const size_t value = sizeof(A) > max_size_of<B...>::value
? sizeof(A)
: max_size_of<B...>::value;
};
// max_size_of returns alignof(Type) for the largest type in the variadic list
// of classes, Types.
template <class... Types>
class max_align_of;
template <class A>
class max_align_of<A> {
public:
static constexpr const size_t value = alignof(A);
};
template <class A, class... B>
class max_align_of<A, B...> {
public:
static constexpr const size_t value = alignof(A) > max_align_of<B...>::value
? alignof(A)
: max_align_of<B...>::value;
};
} // namespace manual_ctor_impl
template <class BaseType, class... DerivedTypes>
class PolymorphicManualConstructor {
public:
// No constructor or destructor because one of the most useful uses of
// this class is as part of a union, and members of a union could not have
// constructors or destructors till C++11. And, anyway, the whole point of
// this class is to bypass constructor and destructor.
BaseType* get() { return reinterpret_cast<BaseType*>(&space_); }
const BaseType* get() const {
return reinterpret_cast<const BaseType*>(&space_);
}
BaseType* operator->() { return get(); }
const BaseType* operator->() const { return get(); }
BaseType& operator*() { return *get(); }
const BaseType& operator*() const { return *get(); }
template <class DerivedType>
void Init() {
FinishInit(new (&space_) DerivedType);
}
// Init() constructs the Type instance using the given arguments
// (which are forwarded to Type's constructor).
//
// Note that Init() with no arguments performs default-initialization,
// not zero-initialization (i.e it behaves the same as "new Type;", not
// "new Type();"), so it will leave non-class types uninitialized.
template <class DerivedType, typename... Ts>
void Init(Ts&&... args) {
FinishInit(new (&space_) DerivedType(std::forward<Ts>(args)...));
}
// Init() that is equivalent to copy and move construction.
// Enables usage like this:
// ManualConstructor<std::vector<int>> v;
// v.Init({1, 2, 3});
template <class DerivedType>
void Init(const DerivedType& x) {
FinishInit(new (&space_) DerivedType(x));
}
template <class DerivedType>
void Init(DerivedType&& x) {
FinishInit(new (&space_) DerivedType(std::move(x)));
}
void Destroy() { get()->~BaseType(); }
private:
template <class DerivedType>
void FinishInit(DerivedType* p) {
static_assert(
manual_ctor_impl::is_one_of<DerivedType, DerivedTypes...>::value,
"DerivedType must be one of the predeclared DerivedTypes");
GPR_ASSERT(reinterpret_cast<BaseType*>(static_cast<DerivedType*>(p)) == p);
}
typename std::aligned_storage<
grpc_core::manual_ctor_impl::max_size_of<DerivedTypes...>::value,
grpc_core::manual_ctor_impl::max_align_of<DerivedTypes...>::value>::type
space_;
};
template <typename Type>
class ManualConstructor {
public:
// No constructor or destructor because one of the most useful uses of
// this class is as part of a union, and members of a union could not have
// constructors or destructors till C++11. And, anyway, the whole point of
// this class is to bypass constructor and destructor.
Type* get() { return reinterpret_cast<Type*>(&space_); }
const Type* get() const { return reinterpret_cast<const Type*>(&space_); }
Type* operator->() { return get(); }
const Type* operator->() const { return get(); }
Type& operator*() { return *get(); }
const Type& operator*() const { return *get(); }
void Init() { new (&space_) Type; }
// Init() constructs the Type instance using the given arguments
// (which are forwarded to Type's constructor).
//
// Note that Init() with no arguments performs default-initialization,
// not zero-initialization (i.e it behaves the same as "new Type;", not
// "new Type();"), so it will leave non-class types uninitialized.
template <typename... Ts>
void Init(Ts&&... args) {
new (&space_) Type(std::forward<Ts>(args)...);
}
// Init() that is equivalent to copy and move construction.
// Enables usage like this:
// ManualConstructor<std::vector<int>> v;
// v.Init({1, 2, 3});
void Init(const Type& x) { new (&space_) Type(x); }
void Init(Type&& x) { new (&space_) Type(std::move(x)); }
void Destroy() { get()->~Type(); }
private:
typename std::aligned_storage<sizeof(Type), alignof(Type)>::type space_;
};
} // namespace grpc_core
#endif
|