aboutsummaryrefslogtreecommitdiff
path: root/absl/numeric/int128_benchmark.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/numeric/int128_benchmark.cc')
-rw-r--r--absl/numeric/int128_benchmark.cc161
1 files changed, 111 insertions, 50 deletions
diff --git a/absl/numeric/int128_benchmark.cc b/absl/numeric/int128_benchmark.cc
index a5502d9..eab1515 100644
--- a/absl/numeric/int128_benchmark.cc
+++ b/absl/numeric/int128_benchmark.cc
@@ -12,15 +12,15 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-#include "absl/numeric/int128.h"
-
#include <algorithm>
#include <cstdint>
+#include <limits>
#include <random>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/config.h"
+#include "absl/numeric/int128.h"
namespace {
@@ -32,57 +32,85 @@ std::mt19937 MakeRandomEngine() {
return std::mt19937(seed);
}
-std::vector<std::pair<absl::uint128, absl::uint128>>
-GetRandomClass128SampleUniformDivisor() {
- std::vector<std::pair<absl::uint128, absl::uint128>> values;
+template <typename T,
+ typename H = typename std::conditional<
+ std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
+std::vector<std::pair<T, T>> GetRandomClass128SampleUniformDivisor() {
+ std::vector<std::pair<T, T>> values;
std::mt19937 random = MakeRandomEngine();
- std::uniform_int_distribution<uint64_t> uniform_uint64;
+ std::uniform_int_distribution<H> uniform_h;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
- absl::uint128 a =
- absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
- absl::uint128 b =
- absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
- values.emplace_back(std::max(a, b),
- std::max(absl::uint128(2), std::min(a, b)));
+ T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
+ T b{absl::MakeUint128(uniform_h(random), uniform_h(random))};
+ values.emplace_back(std::max(a, b), std::max(T(2), std::min(a, b)));
}
return values;
}
+template <typename T>
void BM_DivideClass128UniformDivisor(benchmark::State& state) {
- auto values = GetRandomClass128SampleUniformDivisor();
+ auto values = GetRandomClass128SampleUniformDivisor<T>();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
-BENCHMARK(BM_DivideClass128UniformDivisor);
+BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::uint128);
+BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::int128);
+
+template <typename T>
+void BM_RemainderClass128UniformDivisor(benchmark::State& state) {
+ auto values = GetRandomClass128SampleUniformDivisor<T>();
+ while (state.KeepRunningBatch(values.size())) {
+ for (const auto& pair : values) {
+ benchmark::DoNotOptimize(pair.first % pair.second);
+ }
+ }
+}
+BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::uint128);
+BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::int128);
-std::vector<std::pair<absl::uint128, uint64_t>>
-GetRandomClass128SampleSmallDivisor() {
- std::vector<std::pair<absl::uint128, uint64_t>> values;
+template <typename T,
+ typename H = typename std::conditional<
+ std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
+std::vector<std::pair<T, H>> GetRandomClass128SampleSmallDivisor() {
+ std::vector<std::pair<T, H>> values;
std::mt19937 random = MakeRandomEngine();
- std::uniform_int_distribution<uint64_t> uniform_uint64;
+ std::uniform_int_distribution<H> uniform_h;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
- absl::uint128 a =
- absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
- uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
- values.emplace_back(std::max(a, absl::uint128(b)), b);
+ T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
+ H b{std::max(H{2}, uniform_h(random))};
+ values.emplace_back(std::max(a, T(b)), b);
}
return values;
}
+template <typename T>
void BM_DivideClass128SmallDivisor(benchmark::State& state) {
- auto values = GetRandomClass128SampleSmallDivisor();
+ auto values = GetRandomClass128SampleSmallDivisor<T>();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
-BENCHMARK(BM_DivideClass128SmallDivisor);
+BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::uint128);
+BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::int128);
+
+template <typename T>
+void BM_RemainderClass128SmallDivisor(benchmark::State& state) {
+ auto values = GetRandomClass128SampleSmallDivisor<T>();
+ while (state.KeepRunningBatch(values.size())) {
+ for (const auto& pair : values) {
+ benchmark::DoNotOptimize(pair.first % pair.second);
+ }
+ }
+}
+BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::uint128);
+BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::int128);
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
std::vector<std::pair<absl::uint128, absl::uint128>> values;
@@ -121,74 +149,107 @@ BENCHMARK(BM_AddClass128);
// Some implementations of <random> do not support __int128 when it is
// available, so we make our own uniform_int_distribution-like type.
+template <typename T,
+ typename H = typename std::conditional<
+ std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
class UniformIntDistribution128 {
public:
// NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
- unsigned __int128 operator()(std::mt19937& generator) {
- return (static_cast<unsigned __int128>(dist64_(generator)) << 64) |
- dist64_(generator);
+ T operator()(std::mt19937& generator) {
+ return (static_cast<T>(dist64_(generator)) << 64) | dist64_(generator);
}
private:
- std::uniform_int_distribution<uint64_t> dist64_;
+ std::uniform_int_distribution<H> dist64_;
};
-std::vector<std::pair<unsigned __int128, unsigned __int128>>
-GetRandomIntrinsic128SampleUniformDivisor() {
- std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
+template <typename T,
+ typename H = typename std::conditional<
+ std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
+std::vector<std::pair<T, T>> GetRandomIntrinsic128SampleUniformDivisor() {
+ std::vector<std::pair<T, T>> values;
std::mt19937 random = MakeRandomEngine();
- UniformIntDistribution128 uniform_uint128;
+ UniformIntDistribution128<T> uniform_128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
- unsigned __int128 a = uniform_uint128(random);
- unsigned __int128 b = uniform_uint128(random);
- values.emplace_back(
- std::max(a, b),
- std::max(static_cast<unsigned __int128>(2), std::min(a, b)));
+ T a = uniform_128(random);
+ T b = uniform_128(random);
+ values.emplace_back(std::max(a, b),
+ std::max(static_cast<T>(2), std::min(a, b)));
}
return values;
}
+template <typename T>
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
- auto values = GetRandomIntrinsic128SampleUniformDivisor();
+ auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
-BENCHMARK(BM_DivideIntrinsic128UniformDivisor);
+BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, unsigned __int128);
+BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, __int128);
+
+template <typename T>
+void BM_RemainderIntrinsic128UniformDivisor(benchmark::State& state) {
+ auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
+ while (state.KeepRunningBatch(values.size())) {
+ for (const auto& pair : values) {
+ benchmark::DoNotOptimize(pair.first % pair.second);
+ }
+ }
+}
+BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, unsigned __int128);
+BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, __int128);
-std::vector<std::pair<unsigned __int128, uint64_t>>
-GetRandomIntrinsic128SampleSmallDivisor() {
- std::vector<std::pair<unsigned __int128, uint64_t>> values;
+template <typename T,
+ typename H = typename std::conditional<
+ std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
+std::vector<std::pair<T, H>> GetRandomIntrinsic128SampleSmallDivisor() {
+ std::vector<std::pair<T, H>> values;
std::mt19937 random = MakeRandomEngine();
- UniformIntDistribution128 uniform_uint128;
- std::uniform_int_distribution<uint64_t> uniform_uint64;
+ UniformIntDistribution128<T> uniform_int128;
+ std::uniform_int_distribution<H> uniform_int64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
- unsigned __int128 a = uniform_uint128(random);
- uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
- values.emplace_back(std::max(a, static_cast<unsigned __int128>(b)), b);
+ T a = uniform_int128(random);
+ H b = std::max(H{2}, uniform_int64(random));
+ values.emplace_back(std::max(a, static_cast<T>(b)), b);
}
return values;
}
+template <typename T>
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
- auto values = GetRandomIntrinsic128SampleSmallDivisor();
+ auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
-BENCHMARK(BM_DivideIntrinsic128SmallDivisor);
+BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, unsigned __int128);
+BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, __int128);
+
+template <typename T>
+void BM_RemainderIntrinsic128SmallDivisor(benchmark::State& state) {
+ auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
+ while (state.KeepRunningBatch(values.size())) {
+ for (const auto& pair : values) {
+ benchmark::DoNotOptimize(pair.first % pair.second);
+ }
+ }
+}
+BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, unsigned __int128);
+BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, __int128);
std::vector<std::pair<unsigned __int128, unsigned __int128>>
GetRandomIntrinsic128Sample() {
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
std::mt19937 random = MakeRandomEngine();
- UniformIntDistribution128 uniform_uint128;
+ UniformIntDistribution128<unsigned __int128> uniform_uint128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
values.emplace_back(uniform_uint128(random), uniform_uint128(random));