1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
From 0cfdb30120976290068f4bcbebbf236b960afbb6 Mon Sep 17 00:00:00 2001
From: dummy <dummy@example.com>
Date: Thu, 26 Dec 2013 20:01:30 -0400
Subject: [PATCH] hack to build
---
Crypto/Number/Basic.hs | 14 --------------
Crypto/Number/ModArithmetic.hs | 29 -----------------------------
Crypto/Number/Prime.hs | 18 ------------------
crypto-numbers.cabal | 2 +-
4 files changed, 1 insertion(+), 62 deletions(-)
diff --git a/Crypto/Number/Basic.hs b/Crypto/Number/Basic.hs
index 65c14b3..eaee853 100644
--- a/Crypto/Number/Basic.hs
+++ b/Crypto/Number/Basic.hs
@@ -20,11 +20,7 @@ module Crypto.Number.Basic
, areEven
) where
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-#else
import Data.Bits
-#endif
-- | sqrti returns two integer (l,b) so that l <= sqrt i <= b
-- the implementation is quite naive, use an approximation for the first number
@@ -63,25 +59,16 @@ sqrti i
-- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d
--
gcde :: Integer -> Integer -> (Integer, Integer, Integer)
-#if MIN_VERSION_integer_gmp(0,5,1)
-gcde a b = (s, t, g)
- where (# g, s #) = gcdExtInteger a b
- t = (g - s * a) `div` b
-#else
gcde a b = if d < 0 then (-x,-y,-d) else (x,y,d) where
(d, x, y) = f (a,1,0) (b,0,1)
f t (0, _, _) = t
f (a', sa, ta) t@(b', sb, tb) =
let (q, r) = a' `divMod` b' in
f t (r, sa - (q * sb), ta - (q * tb))
-#endif
-- | get the extended GCD of two integer using the extended binary algorithm (HAC 14.61)
-- get (x,y,d) where d = gcd(a,b) and x,y satisfying ax + by = d
gcde_binary :: Integer -> Integer -> (Integer, Integer, Integer)
-#if MIN_VERSION_integer_gmp(0,5,1)
-gcde_binary = gcde
-#else
gcde_binary a' b'
| b' == 0 = (1,0,a')
| a' >= b' = compute a' b'
@@ -105,7 +92,6 @@ gcde_binary a' b'
in if u2 >= v2
then loop g x y (u2 - v2) v2 (a2 - c2) (b2 - d2) c2 d2
else loop g x y u2 (v2 - u2) a2 b2 (c2 - a2) (d2 - b2)
-#endif
-- | check if a list of integer are all even
areEven :: [Integer] -> Bool
diff --git a/Crypto/Number/ModArithmetic.hs b/Crypto/Number/ModArithmetic.hs
index 942c12f..f8cfc32 100644
--- a/Crypto/Number/ModArithmetic.hs
+++ b/Crypto/Number/ModArithmetic.hs
@@ -29,12 +29,8 @@ module Crypto.Number.ModArithmetic
import Control.Exception (throw, Exception)
import Data.Typeable
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-#else
import Crypto.Number.Basic (gcde_binary)
import Data.Bits
-#endif
-- | Raised when two numbers are supposed to be coprimes but are not.
data CoprimesAssertionError = CoprimesAssertionError
@@ -55,13 +51,7 @@ expSafe :: Integer -- ^ base
-> Integer -- ^ exponant
-> Integer -- ^ modulo
-> Integer -- ^ result
-#if MIN_VERSION_integer_gmp(0,5,1)
-expSafe b e m
- | odd m = powModSecInteger b e m
- | otherwise = powModInteger b e m
-#else
expSafe = exponentiation
-#endif
-- | Compute the modular exponentiation of base^exponant using
-- the fastest algorithm without any consideration for
@@ -74,11 +64,7 @@ expFast :: Integer -- ^ base
-> Integer -- ^ modulo
-> Integer -- ^ result
expFast =
-#if MIN_VERSION_integer_gmp(0,5,1)
- powModInteger
-#else
exponentiation
-#endif
-- note on exponentiation: 0^0 is treated as 1 for mimicking the standard library;
-- the mathematic debate is still open on whether or not this is true, but pratically
@@ -87,22 +73,15 @@ expFast =
-- | exponentiation_rtl_binary computes modular exponentiation as b^e mod m
-- using the right-to-left binary exponentiation algorithm (HAC 14.79)
exponentiation_rtl_binary :: Integer -> Integer -> Integer -> Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-exponentiation_rtl_binary = expSafe
-#else
exponentiation_rtl_binary 0 0 m = 1 `mod` m
exponentiation_rtl_binary b e m = loop e b 1
where sq x = (x * x) `mod` m
loop !0 _ !a = a `mod` m
loop !i !s !a = loop (i `shiftR` 1) (sq s) (if odd i then a * s else a)
-#endif
-- | exponentiation computes modular exponentiation as b^e mod m
-- using repetitive squaring.
exponentiation :: Integer -> Integer -> Integer -> Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-exponentiation = expSafe
-#else
exponentiation b e m
| b == 1 = b
| e == 0 = 1
@@ -110,7 +89,6 @@ exponentiation b e m
| even e = let p = (exponentiation b (e `div` 2) m) `mod` m
in (p^(2::Integer)) `mod` m
| otherwise = (b * exponentiation b (e-1) m) `mod` m
-#endif
--{-# DEPRECATED exponantiation_rtl_binary "typo in API name it's called exponentiation_rtl_binary #-}
exponantiation_rtl_binary :: Integer -> Integer -> Integer -> Integer
@@ -122,17 +100,10 @@ exponantiation = exponentiation
-- | inverse computes the modular inverse as in g^(-1) mod m
inverse :: Integer -> Integer -> Maybe Integer
-#if MIN_VERSION_integer_gmp(0,5,1)
-inverse g m
- | r == 0 = Nothing
- | otherwise = Just r
- where r = recipModInteger g m
-#else
inverse g m
| d > 1 = Nothing
| otherwise = Just (x `mod` m)
where (x,_,d) = gcde_binary g m
-#endif
-- | Compute the modular inverse of 2 coprime numbers.
-- This is equivalent to inverse except that the result
diff --git a/Crypto/Number/Prime.hs b/Crypto/Number/Prime.hs
index 0cea9da..458c94d 100644
--- a/Crypto/Number/Prime.hs
+++ b/Crypto/Number/Prime.hs
@@ -3,9 +3,7 @@
#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif
-#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE MagicHash #-}
-#endif
-- |
-- Module : Crypto.Number.Prime
-- License : BSD-style
@@ -30,12 +28,7 @@ import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde_binary)
import Crypto.Number.ModArithmetic (exponantiation)
-#if MIN_VERSION_integer_gmp(0,5,1)
-import GHC.Integer.GMP.Internals
-import GHC.Base
-#else
import Data.Bits
-#endif
-- | returns if the number is probably prime.
-- first a list of small primes are implicitely tested for divisibility,
@@ -78,21 +71,11 @@ findPrimeFromWith rng prop !n
-- | find a prime from a starting point with no specific property.
findPrimeFrom :: CPRG g => g -> Integer -> (Integer, g)
findPrimeFrom rng n =
-#if MIN_VERSION_integer_gmp(0,5,1)
- (nextPrimeInteger n, rng)
-#else
findPrimeFromWith rng (\g _ -> (True, g)) n
-#endif
-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: CPRG g => g -> Int -> Integer -> (Bool, g)
-#if MIN_VERSION_integer_gmp(0,5,1)
-primalityTestMillerRabin rng (I# tries) !n =
- case testPrimeInteger n tries of
- 0# -> (False, rng)
- _ -> (True, rng)
-#else
primalityTestMillerRabin rng tries !n
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = (False, rng)
@@ -129,7 +112,6 @@ primalityTestMillerRabin rng tries !n
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
-#endif
{-
n < z -> witness to test
diff --git a/crypto-numbers.cabal b/crypto-numbers.cabal
index 9610e34..6669d78 100644
--- a/crypto-numbers.cabal
+++ b/crypto-numbers.cabal
@@ -15,7 +15,7 @@ Extra-Source-Files: Tests/*.hs
Flag integer-gmp
Description: Are we using integer-gmp?
- Default: True
+ Default: False
Library
Build-Depends: base >= 4 && < 5
--
1.7.10.4
|