aboutsummaryrefslogtreecommitdiffhomepage
path: root/Firestore/core/src/firebase/firestore/util/ordered_code.cc
blob: 03da08de5cf97a6d93eacbc6e61f3a138fd1ae8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
 * Copyright 2017 Google
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Firestore/core/src/firebase/firestore/util/ordered_code.h"

#include "Firestore/core/src/firebase/firestore/util/bits.h"
#include "Firestore/core/src/firebase/firestore/util/hard_assert.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/port.h"

#define UNALIGNED_LOAD32 ABSL_INTERNAL_UNALIGNED_LOAD32
#define UNALIGNED_LOAD64 ABSL_INTERNAL_UNALIGNED_LOAD64
#define UNALIGNED_STORE32 ABSL_INTERNAL_UNALIGNED_STORE32
#define UNALIGNED_STORE64 ABSL_INTERNAL_UNALIGNED_STORE64

// We encode a string in different ways depending on whether the item
// should be in lexicographically increasing or decreasing order.
//
//
// Lexicographically increasing order
//
// We want a string-to-string mapping F(x) such that for any two strings
//
//      x < y   =>   F(x) < F(y)
//
// In addition to the normal characters '\x00' through '\xff', we want to
// encode a few extra symbols in strings:
//
//      <sep>           Separator between items
//      <infinity>      Infinite string
//
// Therefore we need an alphabet with at least 258 symbols.  Each
// character '\1' through '\xfe' is mapped to itself.  The other four are
// encoded into two-letter sequences starting with '\0' and '\xff':
//
//      <sep>           encoded as =>           \0\1
//      \0              encoded as =>           \0\xff
//      \xff            encoded as =>           \xff\x00
//      <infinity>      encoded as =>           \xff\xff
//
// The remaining two-letter sequences starting with '\0' and '\xff' are
// currently unused.
//
// F(<infinity>) is defined above.  For any finite string x, F(x) is the
// the encodings of x's characters followed by the encoding for <sep>.  The
// ordering of two finite strings is the same as the ordering of the
// respective characters at the first position where they differ, which in
// turn is the same as the ordering of the encodings of those two
// characters.  Moreover, for every finite string x, F(x) < F(<infinity>).

namespace firebase {
namespace firestore {
namespace util {

static const char kEscape1 = '\000';
static const char kNullCharacter = '\xff';  // Combined with kEscape1
static const char kSeparator = '\001';      // Combined with kEscape1

static const char kEscape2 = '\xff';
static const char kInfinity = '\xff';     // Combined with kEscape2
static const char kFFCharacter = '\000';  // Combined with kEscape2

static const char kEscape1_Separator[2] = {kEscape1, kSeparator};

/** Append to "*dest" the "len" bytes starting from "*src". */
inline static void AppendBytes(std::string* dest, const char* src, size_t len) {
  dest->append(src, len);
}

inline static bool IsSpecialByte(char c) {
  return ((unsigned char)(c + 1)) < 2;
}

/**
 * Returns 0 if one or more of the bytes in the specified uint32 value
 * are the special values 0 or 255, and returns 4 otherwise.  The
 * result of this routine can be added to "p" to either advance past
 * the next 4 bytes if they do not contain a special byte, or to
 * remain on this set of four bytes if they contain the next special
 * byte occurrence.
 *
 * REQUIRES: v_32 is the value of loading the next 4 bytes from "*p" (we
 * pass in v_32 rather than loading it because in some cases, the client
 * may already have the value in a register: "p" is just used for
 * assertion checking).
 */
inline static int AdvanceIfNoSpecialBytes(uint32_t v_32, const char* p) {
  HARD_ASSERT(UNALIGNED_LOAD32(p) == v_32);
  // See comments in SkipToNextSpecialByte if you wish to
  // understand this expression (which checks for the occurrence
  // of the special byte values 0 or 255 in any of the bytes of v_32).
  if ((v_32 - 0x01010101u) & ~(v_32 + 0x01010101u) & 0x80808080u) {
    // Special byte is in p[0..3]
    HARD_ASSERT(IsSpecialByte(p[0]) || IsSpecialByte(p[1]) ||
                IsSpecialByte(p[2]) || IsSpecialByte(p[3]));
    return 0;
  } else {
    HARD_ASSERT(!IsSpecialByte(p[0]));
    HARD_ASSERT(!IsSpecialByte(p[1]));
    HARD_ASSERT(!IsSpecialByte(p[2]));
    HARD_ASSERT(!IsSpecialByte(p[3]));
    return 4;
  }
}

/**
 * Return a pointer to the first byte in the range "[start..limit)"
 * whose value is 0 or 255 (kEscape1 or kEscape2).  If no such byte
 * exists in the range, returns "limit".
 */
inline static const char* SkipToNextSpecialByte(const char* start,
                                                const char* limit) {
  // If these constants were ever changed, this routine needs to change
  HARD_ASSERT(kEscape1 == 0);
  HARD_ASSERT((kEscape2 & 0xff) == 255);
  const char* p = start;
  while (p + 8 <= limit) {
    // Find out if any of the next 8 bytes are either 0 or 255 (our
    // two characters that require special handling).  We do this using
    // the technique described in:
    //
    //    http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
    //
    // We use the test (x + 1) < 2 to check x = 0 or -1(255)
    //
    // If x is a byte value (0x00..0xff):
    // (x - 0x01) & 0x80 is true only when x = 0x81..0xff, 0x00
    // ~(x + 0x01) & 0x80 is true only when x = 0x00..0x7e, 0xff
    // The intersection of the above two sets is x = 0x00 or 0xff.
    // We can ignore carry between bytes because only x = 0x00 or 0xff
    // can cause carry in the expression -- and such x already makes the
    // result value non-zero.
    uint64_t v = UNALIGNED_LOAD64(p);
    bool hasZeroOr255Byte = (v - 0x0101010101010101ull) &
                            ~(v + 0x0101010101010101ull) &
                            0x8080808080808080ull;
    if (!hasZeroOr255Byte) {
      // No special values in the next 8 bytes
      p += 8;
    } else {
// We know the next 8 bytes have a special byte: find it
#ifdef IS_LITTLE_ENDIAN
      uint32_t v_32 = static_cast<uint32_t>(v);  // Low 32 bits of v
#else
      uint32_t v_32 = UNALIGNED_LOAD32(p);
#endif
      // Test 32 bits at once to see if special byte is in next 4 bytes
      // or the following 4 bytes
      p += AdvanceIfNoSpecialBytes(v_32, p);
      if (IsSpecialByte(p[0])) return p;
      if (IsSpecialByte(p[1])) return p + 1;
      if (IsSpecialByte(p[2])) return p + 2;
      HARD_ASSERT(IsSpecialByte(p[3]));  // Last byte must be the special one
      return p + 3;
    }
  }
  if (p + 4 <= limit) {
    uint32_t v_32 = UNALIGNED_LOAD32(p);
    p += AdvanceIfNoSpecialBytes(v_32, p);
  }
  while (p < limit && !IsSpecialByte(*p)) {
    p++;
  }
  return p;
}

// Expose SkipToNextSpecialByte for testing purposes
const char* OrderedCode::TEST_SkipToNextSpecialByte(const char* start,
                                                    const char* limit) {
  return SkipToNextSpecialByte(start, limit);
}

/**
 * Helper routine to encode "s" and append to "*dest", escaping special
 * characters.
 */
inline static void EncodeStringFragment(std::string* dest,
                                        absl::string_view s) {
  const char* p = s.data();
  const char* limit = p + s.size();
  const char* copy_start = p;
  while (true) {
    p = SkipToNextSpecialByte(p, limit);
    if (p >= limit) break;  // No more special characters that need escaping
    char c = *(p++);
    HARD_ASSERT(IsSpecialByte(c));
    if (c == kEscape1) {
      AppendBytes(dest, copy_start, static_cast<size_t>(p - copy_start) - 1);
      dest->push_back(kEscape1);
      dest->push_back(kNullCharacter);
      copy_start = p;
    } else {
      HARD_ASSERT(c == kEscape2);
      AppendBytes(dest, copy_start, static_cast<size_t>(p - copy_start) - 1);
      dest->push_back(kEscape2);
      dest->push_back(kFFCharacter);
      copy_start = p;
    }
  }
  if (p > copy_start) {
    AppendBytes(dest, copy_start, static_cast<size_t>(p - copy_start));
  }
}

void OrderedCode::WriteString(std::string* dest, absl::string_view s) {
  EncodeStringFragment(dest, s);
  AppendBytes(dest, kEscape1_Separator, 2);
}

/**
 * Return number of bytes needed to encode the non-length portion
 * of val in ordered coding.  Returns number in range [0,8].
 */
static inline unsigned int OrderedNumLength(uint64_t val) {
  const int lg = Bits::Log2Floor64(val);  // -1 if val==0
  return static_cast<unsigned int>(lg + 1 + 7) / 8;
}

/**
 * Append n bytes from src to *dst.
 * REQUIRES: n <= 9
 * REQUIRES: src[0..8] are readable bytes (even if n is smaller)
 *
 * If we use string::append() instead of this routine, it increases the
 * runtime of WriteNumIncreasing from ~9ns to ~13ns.
 */
static inline void AppendUpto9(std::string* dst,
                               const char* src,
                               unsigned int n) {
  dst->append(src, 9);         // Fixed-length append
  const size_t extra = 9 - n;  // How many extra bytes we added
  dst->erase(dst->size() - extra, extra);
}

void OrderedCode::WriteNumIncreasing(std::string* dest, uint64_t val) {
  // Values are encoded with a single byte length prefix, followed
  // by the actual value in big-endian format with leading 0 bytes
  // dropped.

  // 8 bytes for value plus one byte for length.  In addition, we have
  // 8 extra bytes at the end so that we can have a fixed-length append
  // call on *dest.
  char buf[17];

  UNALIGNED_STORE64(buf + 1,
                    absl::ghtonll(val));  // buf[0] may be needed for length
  const unsigned int length = OrderedNumLength(val);
  char* start = buf + 9 - length - 1;
  *start = static_cast<char>(length);
  AppendUpto9(dest, start, length + 1);
}

inline static void WriteInfinityInternal(std::string* dest) {
  // Make an array so that we can just do one string operation for performance
  static const char buf[2] = {kEscape2, kInfinity};
  dest->append(buf, 2);
}

void OrderedCode::WriteInfinity(std::string* dest) {
  WriteInfinityInternal(dest);
}

void OrderedCode::WriteTrailingString(std::string* dest,
                                      absl::string_view str) {
  dest->append(str.data(), str.size());
}

/**
 * Parse the encoding of a string previously encoded with or without
 * inversion.  If parse succeeds, return true, consume encoding from
 * "*src", and if result != NULL append the decoded string to "*result".
 * Otherwise, return false and leave both undefined.
 */
inline static bool ReadStringInternal(absl::string_view* src,
                                      std::string* result) {
  const char* start = src->data();
  const char* string_limit = src->data() + src->size();

  // We only scan up to "limit-2" since a valid string must end with
  // a two character terminator: 'kEscape1 kSeparator'
  const char* limit = string_limit - 1;
  const char* copy_start = start;
  while (true) {
    start = SkipToNextSpecialByte(start, limit);
    if (start >= limit) break;  // No terminator sequence found
    const char c = *(start++);
    // If inversion is required, instead of inverting 'c', we invert the
    // character constants to which 'c' is compared.  We get the same
    // behavior but save the runtime cost of inverting 'c'.
    HARD_ASSERT(IsSpecialByte(c));
    if (c == kEscape1) {
      if (result) {
        AppendBytes(result, copy_start,
                    static_cast<size_t>(start - copy_start) - 1);
      }
      // kEscape1 kSeparator ends component
      // kEscape1 kNullCharacter represents '\0'
      const char next = *(start++);
      if (next == kSeparator) {
        src->remove_prefix(static_cast<size_t>(start - src->data()));
        return true;
      } else if (next == kNullCharacter) {
        if (result) {
          *result += '\0';
        }
      } else {
        return false;
      }
      copy_start = start;
    } else {
      HARD_ASSERT(c == kEscape2);
      if (result) {
        AppendBytes(result, copy_start,
                    static_cast<size_t>(start - copy_start) - 1);
      }
      // kEscape2 kFFCharacter represents '\xff'
      // kEscape2 kInfinity is an error
      const char next = *(start++);
      if (next == kFFCharacter) {
        if (result) {
          *result += '\xff';
        }
      } else {
        return false;
      }
      copy_start = start;
    }
  }
  return false;
}

bool OrderedCode::ReadString(absl::string_view* src, std::string* result) {
  return ReadStringInternal(src, result);
}

bool OrderedCode::ReadNumIncreasing(absl::string_view* src, uint64_t* result) {
  if (src->empty()) {
    return false;  // Not enough bytes
  }

  // Decode length byte
  const size_t len = static_cast<size_t>((*src)[0]);

  // If len > 0 and src is longer than 1, the first byte of "payload"
  // must be non-zero (otherwise the encoding is not minimal).
  // In opt mode, we don't enforce that encodings must be minimal.
  HARD_ASSERT(0 == len || src->size() == 1 || (*src)[1] != '\0');

  if (len + 1 > src->size() || len > 8) {
    return false;  // Not enough bytes or too many bytes
  }

  if (result) {
    uint64_t tmp = 0;
    for (size_t i = 0; i < len; i++) {
      tmp <<= 8;
      tmp |= static_cast<unsigned char>((*src)[1 + i]);
    }
    *result = tmp;
  }
  src->remove_prefix(len + 1);
  return true;
}

inline static bool ReadInfinityInternal(absl::string_view* src) {
  if (src->size() >= 2 && ((*src)[0] == kEscape2) && ((*src)[1] == kInfinity)) {
    src->remove_prefix(2);
    return true;
  } else {
    return false;
  }
}

bool OrderedCode::ReadInfinity(absl::string_view* src) {
  return ReadInfinityInternal(src);
}

inline static bool ReadStringOrInfinityInternal(absl::string_view* src,
                                                std::string* result,
                                                bool* inf) {
  if (ReadInfinityInternal(src)) {
    if (inf) *inf = true;
    return true;
  }

  // We don't use ReadStringInternal here because that would inline
  // the whole encoded string parsing code here.  Depending on INVERT, only
  // one of the following two calls will be generated at compile time.
  bool success = OrderedCode::ReadString(src, result);
  if (success) {
    if (inf) *inf = false;
    return true;
  } else {
    return false;
  }
}

bool OrderedCode::ReadStringOrInfinity(absl::string_view* src,
                                       std::string* result,
                                       bool* inf) {
  return ReadStringOrInfinityInternal(src, result, inf);
}

bool OrderedCode::ReadTrailingString(absl::string_view* src,
                                     std::string* result) {
  if (result) result->assign(src->data(), src->size());
  src->remove_prefix(src->size());
  return true;
}

void OrderedCode::TEST_Corrupt(std::string* str, int k) {
  int seen_seps = 0;
  for (size_t i = 0; i < str->size() - 1; i++) {
    if ((*str)[i] == kEscape1 && (*str)[i + 1] == kSeparator) {
      seen_seps++;
      if (seen_seps == k) {
        (*str)[i + 1] = kSeparator + 1;
        return;
      }
    }
  }
}

// Signed number encoding/decoding /////////////////////////////////////
//
// The format is as follows:
//
// The first bit (the most significant bit of the first byte)
// represents the sign, 0 if the number is negative and
// 1 if the number is >= 0.
//
// Any unbroken sequence of successive bits with the same value as the sign
// bit, up to 9 (the 8th and 9th are the most significant bits of the next
// byte), are size bits that count the number of bytes after the first byte.
// That is, the total length is between 1 and 10 bytes.
//
// The value occupies the bits after the sign bit and the "size bits"
// till the end of the string, in network byte order.  If the number
// is negative, the bits are in 2-complement.
//
//
// Example 1: number 0x424242 -> 4 byte big-endian hex string 0xf0424242:
//
// +---------------+---------------+---------------+---------------+
//  1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0
// +---------------+---------------+---------------+---------------+
//  ^ ^ ^ ^   ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
//  | | | |   | | | | | | | | | | | | | | | | | | | | | | | | | | |
//  | | | |   payload: the remaining bits after the sign and size bits
//  | | | |            and the delimiter bit, the value is 0x424242
//  | | | |
//  | size bits: 3 successive bits with the same value as the sign bit
//  |            (followed by a delimiter bit with the opposite value)
//  |            mean that there are 3 bytes after the first byte, 4 total
//  |
//  sign bit: 1 means that the number is non-negative
//
// Example 2: negative number -0x800 -> 2 byte big-endian hex string 0x3800:
//
// +---------------+---------------+
//  0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
// +---------------+---------------+
//  ^ ^   ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
//  | |   | | | | | | | | | | | | | | | | | | | | | | | | | | |
//  | |   payload: the remaining bits after the sign and size bits and the
//  | |            delimiter bit, 2-complement because of the negative sign,
//  | |            value is ~0x7ff, represents the value -0x800
//  | |
//  | size bits: 1 bit with the same value as the sign bit
//  |            (followed by a delimiter bit with the opposite value)
//  |            means that there is 1 byte after the first byte, 2 total
//  |
//  sign bit: 0 means that the number is negative
//
//
// Compared with the simpler unsigned format used for uint64_t numbers,
// this format is more compact for small numbers, namely one byte encodes
// numbers in the range [-64,64), two bytes cover the range [-2^13,2^13), etc.
// In general, n bytes encode numbers in the range [-2^(n*7-1),2^(n*7-1)).
// (The cross-over point for compactness of representation is 8 bytes,
// where this format only covers the range [-2^55,2^55),
// whereas an encoding with sign bit and length in the first byte and
// payload in all following bytes would cover [-2^56,2^56).)

static const int kMaxSigned64Length = 10;

// This array maps encoding length to header bits in the first two bytes.
static const char kLengthToHeaderBits[1 + kMaxSigned64Length][2] = {
    {0, 0},      {'\x80', 0},      {'\xc0', 0},     {'\xe0', 0},
    {'\xf0', 0}, {'\xf8', 0},      {'\xfc', 0},     {'\xfe', 0},
    {'\xff', 0}, {'\xff', '\x80'}, {'\xff', '\xc0'}};

// This array maps encoding lengths to the header bits that overlap with
// the payload and need fixing when reading.
static const uint64_t kLengthToMask[1 + kMaxSigned64Length] = {
    0ULL,
    0x80ULL,
    0xc000ULL,
    0xe00000ULL,
    0xf0000000ULL,
    0xf800000000ULL,
    0xfc0000000000ULL,
    0xfe000000000000ULL,
    0xff00000000000000ULL,
    0x8000000000000000ULL,
    0ULL};

// This array maps the number of bits in a number to the encoding
// length produced by WriteSignedNumIncreasing.
// For positive numbers, the number of bits is 1 plus the most significant
// bit position (the highest bit position in a positive int64_t is 63).
// For a negative number n, we count the bits in ~n.
// That is, length = kBitsToLength[Bits::Log2Floor64(n < 0 ? ~n : n) + 1].
static const int8_t kBitsToLength[1 + 63] = {
    1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4,
    4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7,
    7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10};

/** Calculates the encoding length in bytes of the signed number n. */
static inline int SignedEncodingLength(int64_t n) {
  return kBitsToLength[Bits::Log2Floor64(
                           static_cast<uint64_t>(n < 0 ? ~n : n)) +
                       1];
}

/** Slightly faster version for n > 0. */
static inline int SignedEncodingLengthPositive(int64_t n) {
  return kBitsToLength[Bits::Log2FloorNonZero64(static_cast<uint64_t>(n)) + 1];
}

void OrderedCode::WriteSignedNumIncreasing(std::string* dest, int64_t val) {
  const int64_t x = val < 0 ? ~val : val;
  if (x < 64) {  // fast path for encoding length == 1
    *dest += static_cast<char>(kLengthToHeaderBits[1][0] ^ val);
    return;
  }
  // buf = val in network byte order, sign extended to 10 bytes
  const char sign_byte = val < 0 ? '\xff' : '\0';
  char buf[10] = {
      sign_byte,
      sign_byte,
  };
  UNALIGNED_STORE64(buf + 2, absl::ghtonll(static_cast<uint64_t>(val)));

  HARD_ASSERT(sizeof(buf) == kMaxSigned64Length, "max length size mismatch");
  const size_t len = static_cast<size_t>(SignedEncodingLengthPositive(x));
  HARD_ASSERT(len >= 2);
  char* const begin = buf + sizeof(buf) - len;
  begin[0] ^= kLengthToHeaderBits[len][0];
  begin[1] ^= kLengthToHeaderBits[len][1];  // ok because len >= 2
  dest->append(begin, len);
}

bool OrderedCode::ReadSignedNumIncreasing(absl::string_view* src,
                                          int64_t* result) {
  if (src->empty()) return false;
  const uint64_t xor_mask = (!((*src)[0] & 0x80)) ? ~0ULL : 0ULL;
  const unsigned char first_byte = static_cast<unsigned char>(
      static_cast<uint64_t>((*src)[0]) ^ (xor_mask & 0xff));

  // now calculate and test length, and set x to raw (unmasked) result
  size_t len;
  uint64_t x;
  if (first_byte != 0xff) {
    len = static_cast<size_t>(7 - Bits::Log2FloorNonZero(first_byte ^ 0xff));
    if (src->size() < len) return false;
    x = xor_mask;  // sign extend using xor_mask
    for (size_t i = 0; i < len; ++i)
      x = (x << 8) | static_cast<unsigned char>((*src)[i]);
  } else {
    len = 8;
    if (src->size() < len) return false;
    const unsigned char second_byte = static_cast<unsigned char>(
        static_cast<uint64_t>((*src)[1]) ^ (xor_mask & 0xff));
    if (second_byte >= 0x80) {
      if (second_byte < 0xc0) {
        len = 9;
      } else {
        const unsigned char third_byte = static_cast<unsigned char>(
            static_cast<uint64_t>((*src)[2]) ^ (xor_mask & 0xff));
        if (second_byte == 0xc0 && third_byte < 0x80) {
          len = 10;
        } else {
          return false;  // either len > 10 or len == 10 and #bits > 63
        }
      }
      if (src->size() < len) return false;
    }
    x = absl::gntohll(UNALIGNED_LOAD64(src->data() + len - 8));
  }

  x ^= kLengthToMask[len];  // remove spurious header bits

  HARD_ASSERT(len == static_cast<size_t>(
                         SignedEncodingLength(static_cast<int64_t>(x))));

  if (result) *result = static_cast<int64_t>(x);
  src->remove_prefix(static_cast<size_t>(len));
  return true;
}

}  // namespace util
}  // namespace firestore
}  // namespace firebase