aboutsummaryrefslogtreecommitdiffhomepage
path: root/Firestore/third_party/abseil-cpp/absl/base/optimization.h
diff options
context:
space:
mode:
Diffstat (limited to 'Firestore/third_party/abseil-cpp/absl/base/optimization.h')
-rw-r--r--Firestore/third_party/abseil-cpp/absl/base/optimization.h165
1 files changed, 165 insertions, 0 deletions
diff --git a/Firestore/third_party/abseil-cpp/absl/base/optimization.h b/Firestore/third_party/abseil-cpp/absl/base/optimization.h
new file mode 100644
index 0000000..aaaffa4
--- /dev/null
+++ b/Firestore/third_party/abseil-cpp/absl/base/optimization.h
@@ -0,0 +1,165 @@
+//
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: optimization.h
+// -----------------------------------------------------------------------------
+//
+// This header file defines portable macros for performance optimization.
+
+#ifndef ABSL_BASE_OPTIMIZATION_H_
+#define ABSL_BASE_OPTIMIZATION_H_
+
+#include "absl/base/config.h"
+
+// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
+//
+// Instructs the compiler to avoid optimizing tail-call recursion. Use of this
+// macro is useful when you wish to preserve the existing function order within
+// a stack trace for logging, debugging, or profiling purposes.
+//
+// Example:
+//
+// int f() {
+// int result = g();
+// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
+// return result;
+// }
+#if defined(__pnacl__)
+#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
+#elif defined(__clang__)
+// Clang will not tail call given inline volatile assembly.
+#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
+#elif defined(__GNUC__)
+// GCC will not tail call given inline volatile assembly.
+#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
+#elif defined(_MSC_VER)
+#include <intrin.h>
+// The __nop() intrinsic blocks the optimisation.
+#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
+#else
+#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
+#endif
+
+// ABSL_CACHELINE_SIZE
+//
+// Explicitly defines the size of the L1 cache for purposes of alignment.
+// Setting the cacheline size allows you to specify that certain objects be
+// aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
+// (See below.)
+//
+// NOTE: this macro should be replaced with the following C++17 features, when
+// those are generally available:
+//
+// * `std::hardware_constructive_interference_size`
+// * `std::hardware_destructive_interference_size`
+//
+// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
+// for more information.
+#if defined(__GNUC__)
+// Cache line alignment
+#if defined(__i386__) || defined(__x86_64__)
+#define ABSL_CACHELINE_SIZE 64
+#elif defined(__powerpc64__)
+#define ABSL_CACHELINE_SIZE 128
+#elif defined(__aarch64__)
+// We would need to read special register ctr_el0 to find out L1 dcache size.
+// This value is a good estimate based on a real aarch64 machine.
+#define ABSL_CACHELINE_SIZE 64
+#elif defined(__arm__)
+// Cache line sizes for ARM: These values are not strictly correct since
+// cache line sizes depend on implementations, not architectures. There
+// are even implementations with cache line sizes configurable at boot
+// time.
+#if defined(__ARM_ARCH_5T__)
+#define ABSL_CACHELINE_SIZE 32
+#elif defined(__ARM_ARCH_7A__)
+#define ABSL_CACHELINE_SIZE 64
+#endif
+#endif
+
+#ifndef ABSL_CACHELINE_SIZE
+// A reasonable default guess. Note that overestimates tend to waste more
+// space, while underestimates tend to waste more time.
+#define ABSL_CACHELINE_SIZE 64
+#endif
+
+// ABSL_CACHELINE_ALIGNED
+//
+// Indicates that the declared object be cache aligned using
+// `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
+// load a set of related objects in the L1 cache for performance improvements.
+// Cacheline aligning objects properly allows constructive memory sharing and
+// prevents destructive (or "false") memory sharing.
+//
+// NOTE: this macro should be replaced with usage of `alignas()` using
+// `std::hardware_constructive_interference_size` and/or
+// `std::hardware_destructive_interference_size` when available within C++17.
+//
+// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
+// for more information.
+//
+// On some compilers, `ABSL_CACHELINE_ALIGNED` expands to
+// `__attribute__((aligned(ABSL_CACHELINE_SIZE)))`. For compilers where this is
+// not known to work, the macro expands to nothing.
+//
+// No further guarantees are made here. The result of applying the macro
+// to variables and types is always implementation-defined.
+//
+// WARNING: It is easy to use this attribute incorrectly, even to the point
+// of causing bugs that are difficult to diagnose, crash, etc. It does not
+// of itself guarantee that objects are aligned to a cache line.
+//
+// Recommendations:
+//
+// 1) Consult compiler documentation; this comment is not kept in sync as
+// toolchains evolve.
+// 2) Verify your use has the intended effect. This often requires inspecting
+// the generated machine code.
+// 3) Prefer applying this attribute to individual variables. Avoid
+// applying it to types. This tends to localize the effect.
+#define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
+
+#else // not GCC
+#define ABSL_CACHELINE_SIZE 64
+#define ABSL_CACHELINE_ALIGNED
+#endif
+
+// ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
+//
+// Enables the compiler to prioritize compilation using static analysis for
+// likely paths within a boolean branch.
+//
+// Example:
+//
+// if (ABSL_PREDICT_TRUE(expression)) {
+// return result; // Faster if more likely
+// } else {
+// return 0;
+// }
+//
+// Compilers can use the information that a certain branch is not likely to be
+// taken (for instance, a CHECK failure) to optimize for the common case in
+// the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
+#if ABSL_HAVE_BUILTIN(__builtin_expect) || \
+ (defined(__GNUC__) && !defined(__clang__))
+#define ABSL_PREDICT_FALSE(x) (__builtin_expect(x, 0))
+#define ABSL_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
+#else
+#define ABSL_PREDICT_FALSE(x) x
+#define ABSL_PREDICT_TRUE(x) x
+#endif
+
+#endif // ABSL_BASE_OPTIMIZATION_H_