aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZUtil/ZSimplify/Autogenerated.v
blob: df2abfe33e5c07c6f113dc6fb3e54604ad4abf99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Local Open Scope Z_scope.

Module Z.
  Local Ltac simplify_div_tac :=
    intros; Z.div_mod_to_quot_rem_in_goal; nia.
  (* Naming Convention: [X] for thing being divided by, [p] for plus,
     [m] for minus, [d] for div, and [_] to separate parentheses and
     multiplication. *)
  (* Mathematica code to generate these hints:
<<
ClearAll[minus, plus, div, mul, combine, parens, ExprToString,
  ExprToExpr, ExprToName, SymbolsIn, Chars, RestFrom, a, b, c, d, e,
  f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, X];
Chars = StringSplit["abcdefghijklmnopqrstuvwxyz", ""];
RestFrom[i_, len_] :=
 Join[{mul[Chars[[i]], "X"]}, Take[Drop[Chars, i], len]]
Exprs = Flatten[
   Map[{#1, #1 /. mul[a_, "X", b___] :> mul["X", a, b]} &, Flatten[{
      Table[
       Table[div[
         combine @@
          Join[Take[Chars, start - 1], RestFrom[start, len]],
         "X"], {len, 0, 10 - start}], {start, 1, 2}],
      Table[
       Table[div[
         combine["a",
          parens @@
           Join[Take[Drop[Chars, 1], start - 1],
            RestFrom[1 + start, len]]], "X"], {len, 0,
         10 - start}], {start, 1, 2}],
      div[combine["a", parens["b", parens["c", mul["d", "X"]], "e"]],
       "X"],
      div[combine["a", "b", parens["c", mul["d", "X"]], "e"], "X"],
      div[combine["a", "b", mul["c", "X", "d"], "e", "f"], "X"],
      div[combine["a", mul["b", "X", "c"], "d", "e"], "X"],
      div[
       combine["a",
        parens["b", parens["c", mul["d", "X", "e"]], "f"]], "X"],
      div[combine["a", parens["b", mul["c", "X", "d"]], "e"], "X"]}]]];
ExprToString[div[x_, y_], withparen_: False] :=
 With[{v := ExprToString[x, True] <> " / " <> ExprToString[y, True]},
  If[withparen, "(" <> v <> ")", v]]
ExprToString[combine[x_], withparen_: False] :=
 ExprToString[x, withparen]
ExprToString[combine[x_, minus, y__], withparen_: False] :=
 With[{v :=
    ExprToString[x, False] <> " - " <>
     ExprToString[combine[y], False]},
  If[withparen, "(" <> v <> ")", v]]
ExprToString[combine[minus, y__], withparen_: False] :=
 With[{v := "-" <> ExprToString[combine[y], False]},
  If[withparen, "(" <> v <> ")", v]]
ExprToString[combine[x_, y__], withparen_: False] :=
 With[{v :=
    ExprToString[x, False] <> " + " <>
     ExprToString[combine[y], False]},
  If[withparen, "(" <> v <> ")", v]]
ExprToString[mul[x_], withparen_: False] := ExprToString[x]
ExprToString[mul[x_, y__], withparen_: False] :=
 With[{v :=
    ExprToString[x, False] <> " * " <> ExprToString[mul[y], False]},
  If[withparen, "(" <> v <> ")", v]]
ExprToString[parens[x__], withparen_: False] :=
 "(" <> ExprToString[combine[x]] <> ")"
ExprToString[x_String, withparen_: False] := x
ExprToExpr[div[x__]] := Divide @@ Map[ExprToExpr, {x}]
ExprToExpr[mul[x__]] := Times @@ Map[ExprToExpr, {x}]
ExprToExpr[combine[]] := 0
ExprToExpr[combine[minus, y_, z___]] := -ExprToExpr[y] +
  ExprToExpr[combine[z]]
ExprToExpr[combine[x_, y___]] := ExprToExpr[x] + ExprToExpr[combine[y]]
ExprToExpr[parens[x__]] := ExprToExpr[combine[x]]
ExprToExpr[x_String] := Symbol[x]
ExprToName["X", ispos_: True] := If[ispos, "X", "mX"]
ExprToName[x_String, ispos_: True] := If[ispos, "p", "m"]
ExprToName[div[x_, y_], ispos_: True] :=
 If[ispos, "p", "m"] <> ExprToName[x] <> "d" <> ExprToName[y]
ExprToName[mul[x_], ispos_: True] :=
 If[ispos, "", "m_"] <> ExprToName[x] <> "_"
ExprToName[mul[x_, y__], ispos_: True] :=
 If[ispos, "", "m_"] <> ExprToName[x] <> ExprToName[mul[y]]
ExprToName[combine[], ispos_: True] := ""
ExprToName[combine[x_], ispos_: True] := ExprToName[x, ispos]
ExprToName[combine[x_, minus, mul[y__], z___], ispos_: True] :=
 ExprToName[x, ispos] <> "m_" <> ExprToName[mul[y], True] <>
  ExprToName[combine[z], True]
ExprToName[combine[x_, mul[y__], z___], ispos_: True] :=
 ExprToName[x, ispos] <> "p_" <> ExprToName[mul[y], True] <>
  ExprToName[combine[z], True]
ExprToName[combine[x_, y__], ispos_: True] :=
 ExprToName[x, ispos] <> ExprToName[combine[y], True]
ExprToName[combine[x_, minus, y__], ispos_: True] :=
 ExprToName[x, ispos] <> ExprToName[combine[y], True]
ExprToName[combine[x_, y__], ispos_: True] :=
 ExprToName[x, ispos] <> ExprToName[combine[y], True]
ExprToName[parens[x__], ispos_: True] :=
 "_o_" <> ExprToName[combine[x], ispos] <> "_c_"
SymbolsIn[x_String] := {x <> " "}
SymbolsIn[f_[y___]] := Join @@ Map[SymbolsIn, {y}]
StringJoin @@
 Map[{"  Lemma simplify_div_" <> ExprToName[#1] <> " " <>
     StringJoin @@ Sort[DeleteDuplicates[SymbolsIn[#1]]] <>
     ": X <> 0 -> " <> ExprToString[#1] <> " = " <>
     StringReplace[(FullSimplify[ExprToExpr[#1]] // InputForm //
        ToString), "/" -> " / "] <> "." <>
     "\n  Proof. simplify_div_tac. Qed.\n  Hint Rewrite \
simplify_div_" <> ExprToName[#1] <>
     " using zutil_arith : zsimplify.\n"} &, Exprs]
>> *)
  Lemma simplify_div_ppX_dX a X : X <> 0 -> (a * X) / X = a.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_dX a X : X <> 0 -> (X * a) / X = a.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_dX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_pdX a b X : X <> 0 -> (a * X + b) / X = a + b / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_pdX a b X : X <> 0 -> (X * a + b) / X = a + b / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_ppdX a b c X : X <> 0 -> (a * X + b + c) / X = a + (b + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_ppdX a b c X : X <> 0 -> (X * a + b + c) / X = a + (b + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_pppdX a b c d X : X <> 0 -> (a * X + b + c + d) / X = a + (b + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_pppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_pppdX a b c d X : X <> 0 -> (X * a + b + c + d) / X = a + (b + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_pppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_ppppdX a b c d e X : X <> 0 -> (a * X + b + c + d + e) / X = a + (b + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_ppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_ppppdX a b c d e X : X <> 0 -> (X * a + b + c + d + e) / X = a + (b + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_ppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_pppppdX a b c d e f X : X <> 0 -> (a * X + b + c + d + e + f) / X = a + (b + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_pppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_pppppdX a b c d e f X : X <> 0 -> (X * a + b + c + d + e + f) / X = a + (b + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_pppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_ppppppdX a b c d e f g X : X <> 0 -> (a * X + b + c + d + e + f + g) / X = a + (b + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_ppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_ppppppdX a b c d e f g X : X <> 0 -> (X * a + b + c + d + e + f + g) / X = a + (b + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_ppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_pppppppdX a b c d e f g h X : X <> 0 -> (a * X + b + c + d + e + f + g + h) / X = a + (b + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_pppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_pppppppdX a b c d e f g h X : X <> 0 -> (X * a + b + c + d + e + f + g + h) / X = a + (b + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_pppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_ppppppppdX a b c d e f g h i X : X <> 0 -> (a * X + b + c + d + e + f + g + h + i) / X = a + (b + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_ppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_ppppppppdX a b c d e f g h i X : X <> 0 -> (X * a + b + c + d + e + f + g + h + i) / X = a + (b + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_ppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppX_pppppppppdX a b c d e f g h i j X : X <> 0 -> (a * X + b + c + d + e + f + g + h + i + j) / X = a + (b + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppX_pppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pXp_pppppppppdX a b c d e f g h i j X : X <> 0 -> (X * a + b + c + d + e + f + g + h + i + j) / X = a + (b + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pXp_pppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_dX a b X : X <> 0 -> (a + b * X) / X = b + a / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_dX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_dX a b X : X <> 0 -> (a + X * b) / X = b + a / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_dX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_pdX a b c X : X <> 0 -> (a + b * X + c) / X = b + (a + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_pdX a b c X : X <> 0 -> (a + X * b + c) / X = b + (a + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_ppdX a b c d X : X <> 0 -> (a + b * X + c + d) / X = b + (a + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_ppdX a b c d X : X <> 0 -> (a + X * b + c + d) / X = b + (a + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_pppdX a b c d e X : X <> 0 -> (a + b * X + c + d + e) / X = b + (a + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_pppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_pppdX a b c d e X : X <> 0 -> (a + X * b + c + d + e) / X = b + (a + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_pppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_ppppdX a b c d e f X : X <> 0 -> (a + b * X + c + d + e + f) / X = b + (a + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_ppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_ppppdX a b c d e f X : X <> 0 -> (a + X * b + c + d + e + f) / X = b + (a + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_ppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_pppppdX a b c d e f g X : X <> 0 -> (a + b * X + c + d + e + f + g) / X = b + (a + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_pppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_pppppdX a b c d e f g X : X <> 0 -> (a + X * b + c + d + e + f + g) / X = b + (a + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_pppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_ppppppdX a b c d e f g h X : X <> 0 -> (a + b * X + c + d + e + f + g + h) / X = b + (a + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_ppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_ppppppdX a b c d e f g h X : X <> 0 -> (a + X * b + c + d + e + f + g + h) / X = b + (a + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_ppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_pppppppdX a b c d e f g h i X : X <> 0 -> (a + b * X + c + d + e + f + g + h + i) / X = b + (a + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_pppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_pppppppdX a b c d e f g h i X : X <> 0 -> (a + X * b + c + d + e + f + g + h + i) / X = b + (a + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_pppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pX_ppppppppdX a b c d e f g h i j X : X <> 0 -> (a + b * X + c + d + e + f + g + h + i + j) / X = b + (a + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pX_ppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xp_ppppppppdX a b c d e f g h i j X : X <> 0 -> (a + X * b + c + d + e + f + g + h + i + j) / X = b + (a + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xp_ppppppppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX__c_dX a b X : X <> 0 -> (a + (b * X)) / X = b + a / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX__c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp__c_dX a b X : X <> 0 -> (a + (X * b)) / X = b + a / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp__c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_p_c_dX a b c X : X <> 0 -> (a + (b * X + c)) / X = b + (a + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_p_c_dX a b c X : X <> 0 -> (a + (X * b + c)) / X = b + (a + c) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_pp_c_dX a b c d X : X <> 0 -> (a + (b * X + c + d)) / X = b + (a + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_pp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_pp_c_dX a b c d X : X <> 0 -> (a + (X * b + c + d)) / X = b + (a + c + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_pp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_ppp_c_dX a b c d e X : X <> 0 -> (a + (b * X + c + d + e)) / X = b + (a + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_ppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_ppp_c_dX a b c d e X : X <> 0 -> (a + (X * b + c + d + e)) / X = b + (a + c + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_ppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_pppp_c_dX a b c d e f X : X <> 0 -> (a + (b * X + c + d + e + f)) / X = b + (a + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_pppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_pppp_c_dX a b c d e f X : X <> 0 -> (a + (X * b + c + d + e + f)) / X = b + (a + c + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_pppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_ppppp_c_dX a b c d e f g X : X <> 0 -> (a + (b * X + c + d + e + f + g)) / X = b + (a + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_ppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_ppppp_c_dX a b c d e f g X : X <> 0 -> (a + (X * b + c + d + e + f + g)) / X = b + (a + c + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_ppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_pppppp_c_dX a b c d e f g h X : X <> 0 -> (a + (b * X + c + d + e + f + g + h)) / X = b + (a + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_pppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_pppppp_c_dX a b c d e f g h X : X <> 0 -> (a + (X * b + c + d + e + f + g + h)) / X = b + (a + c + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_pppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_ppppppp_c_dX a b c d e f g h i X : X <> 0 -> (a + (b * X + c + d + e + f + g + h + i)) / X = b + (a + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_ppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_ppppppp_c_dX a b c d e f g h i X : X <> 0 -> (a + (X * b + c + d + e + f + g + h + i)) / X = b + (a + c + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_ppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_pppppppp_c_dX a b c d e f g h i j X : X <> 0 -> (a + (b * X + c + d + e + f + g + h + i + j)) / X = b + (a + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_pppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_pppppppp_c_dX a b c d e f g h i j X : X <> 0 -> (a + (X * b + c + d + e + f + g + h + i + j)) / X = b + (a + c + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_pppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pX_ppppppppp_c_dX a b c d e f g h i j k X : X <> 0 -> (a + (b * X + c + d + e + f + g + h + i + j + k)) / X = b + (a + c + d + e + f + g + h + i + j + k) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pX_ppppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_Xp_ppppppppp_c_dX a b c d e f g h i j k X : X <> 0 -> (a + (X * b + c + d + e + f + g + h + i + j + k)) / X = b + (a + c + d + e + f + g + h + i + j + k) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_Xp_ppppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX__c_dX a b c X : X <> 0 -> (a + (b + c * X)) / X = c + (a + b) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX__c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp__c_dX a b c X : X <> 0 -> (a + (b + X * c)) / X = c + (a + b) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp__c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_p_c_dX a b c d X : X <> 0 -> (a + (b + c * X + d)) / X = c + (a + b + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_p_c_dX a b c d X : X <> 0 -> (a + (b + X * c + d)) / X = c + (a + b + d) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_pp_c_dX a b c d e X : X <> 0 -> (a + (b + c * X + d + e)) / X = c + (a + b + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_pp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_pp_c_dX a b c d e X : X <> 0 -> (a + (b + X * c + d + e)) / X = c + (a + b + d + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_pp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_ppp_c_dX a b c d e f X : X <> 0 -> (a + (b + c * X + d + e + f)) / X = c + (a + b + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_ppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_ppp_c_dX a b c d e f X : X <> 0 -> (a + (b + X * c + d + e + f)) / X = c + (a + b + d + e + f) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_ppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_pppp_c_dX a b c d e f g X : X <> 0 -> (a + (b + c * X + d + e + f + g)) / X = c + (a + b + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_pppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_pppp_c_dX a b c d e f g X : X <> 0 -> (a + (b + X * c + d + e + f + g)) / X = c + (a + b + d + e + f + g) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_pppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_ppppp_c_dX a b c d e f g h X : X <> 0 -> (a + (b + c * X + d + e + f + g + h)) / X = c + (a + b + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_ppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_ppppp_c_dX a b c d e f g h X : X <> 0 -> (a + (b + X * c + d + e + f + g + h)) / X = c + (a + b + d + e + f + g + h) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_ppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_pppppp_c_dX a b c d e f g h i X : X <> 0 -> (a + (b + c * X + d + e + f + g + h + i)) / X = c + (a + b + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_pppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_pppppp_c_dX a b c d e f g h i X : X <> 0 -> (a + (b + X * c + d + e + f + g + h + i)) / X = c + (a + b + d + e + f + g + h + i) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_pppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_ppppppp_c_dX a b c d e f g h i j X : X <> 0 -> (a + (b + c * X + d + e + f + g + h + i + j)) / X = c + (a + b + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_ppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_ppppppp_c_dX a b c d e f g h i j X : X <> 0 -> (a + (b + X * c + d + e + f + g + h + i + j)) / X = c + (a + b + d + e + f + g + h + i + j) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_ppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pX_pppppppp_c_dX a b c d e f g h i j k X : X <> 0 -> (a + (b + c * X + d + e + f + g + h + i + j + k)) / X = c + (a + b + d + e + f + g + h + i + j + k) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pX_pppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xp_pppppppp_c_dX a b c d e f g h i j k X : X <> 0 -> (a + (b + X * c + d + e + f + g + h + i + j + k)) / X = c + (a + b + d + e + f + g + h + i + j + k) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xp_pppppppp_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_p_o_pp_pX__c_p_c_dX a b c d e X : X <> 0 -> (a + (b + (c + d * X) + e)) / X = d + (a + b + c + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_p_o_pp_pX__c_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_p_o_pp_Xp__c_p_c_dX a b c d e X : X <> 0 -> (a + (b + (c + X * d) + e)) / X = d + (a + b + c + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_p_o_pp_Xp__c_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_o_pp_pX__c_pdX a b c d e X : X <> 0 -> (a + b + (c + d * X) + e) / X = d + (a + b + c + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_o_pp_pX__c_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_o_pp_Xp__c_pdX a b c d e X : X <> 0 -> (a + b + (c + X * d) + e) / X = d + (a + b + c + e) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_o_pp_Xp__c_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_pppp_pXp_ppdX a b c d e f X : X <> 0 -> (a + b + c * X * d + e + f) / X = (a + b + e + f + c*d*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pppp_pXp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pppp_Xpp_ppdX a b c d e f X : X <> 0 -> (a + b + X * c * d + e + f) / X = (a + b + e + f + c*d*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pppp_Xpp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_pXp_ppdX a b c d e X : X <> 0 -> (a + b * X * c + d + e) / X = (a + d + e + b*c*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_pXp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_ppp_Xpp_ppdX a b c d e X : X <> 0 -> (a + X * b * c + d + e) / X = (a + d + e + b*c*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_ppp_Xpp_ppdX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_p_o_pp_pXp__c_p_c_dX a b c d e f X : X <> 0 -> (a + (b + (c + d * X * e) + f)) / X = (a + b + c + f + d*e*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_p_o_pp_pXp__c_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_p_o_pp_Xpp__c_p_c_dX a b c d e f X : X <> 0 -> (a + (b + (c + X * d * e) + f)) / X = (a + b + c + f + d*e*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_p_o_pp_Xpp__c_p_c_dX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_pXp__c_pdX a b c d e X : X <> 0 -> (a + (b + c * X * d) + e) / X = (a + b + e + c*d*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_pXp__c_pdX using zutil_arith : zsimplify.
  Lemma simplify_div_pp_o_pp_Xpp__c_pdX a b c d e X : X <> 0 -> (a + (b + X * c * d) + e) / X = (a + b + e + c*d*X) / X.
  Proof. simplify_div_tac. Qed.
  Hint Rewrite simplify_div_pp_o_pp_Xpp__c_pdX using zutil_arith : zsimplify.


  (* Naming convention: [X] for thing being aggregated, [p] for plus,
     [m] for minus, [_] for parentheses *)
  (* Python code to generate these hints:
<<
#!/usr/bin/env python

def sgn(v):
    if v < 0:
        return -1
    elif v == 0:
        return 0
    elif v > 0:
        return 1

def to_eqn(name):
    vars_left = list('abcdefghijklmnopqrstuvwxyz')
    ret = ''
    close = ''
    while name:
        if name[0] == 'X':
            ret += ' X'
            name = name[1:]
        elif not name[0].isdigit():
            ret += ' ' + vars_left[0]
            vars_left = vars_left[1:]
        if name:
            if name[0] == 'm': ret += ' -'
            elif name[0] == 'p': ret += ' +'
            elif name[0].isdigit(): ret += ' %s *' % name[0]
            name = name[1:]
        if name and name[0] == '_':
            ret += ' ('
            close += ')'
            name = name[1:]
    if ret[-1] != 'X':
        ret += ' ' + vars_left[0]
    return (ret + close).strip().replace('( ', '(')

def simplify(eqn):
    counts = {}
    sign_stack = [1, 1]
    for i in eqn:
        if i == ' ': continue
        elif i == '(': sign_stack.append(sign_stack[-1])
        elif i == ')': sign_stack.pop()
        elif i == '+': sign_stack.append(sgn(sign_stack[-1]))
        elif i == '-': sign_stack.append(-sgn(sign_stack[-1]))
        elif i == '*': continue
        elif i.isdigit(): sign_stack[-1] *= int(i)
        else:
            counts[i] = counts.get(i,0) + sign_stack.pop()
    ret = ''
    for k in sorted(counts.keys()):
        if counts[k] == 1: ret += ' + %s' % k
        elif counts[k] == -1: ret += ' - %s' % k
        elif counts[k] < 0: ret += ' - %d * %s' % (abs(counts[k]), k)
        elif counts[k] > 0: ret += ' + %d * %s' % (abs(counts[k]), k)
    if ret == '': ret = '0'
    return ret.strip(' +')


def to_def(name):
    eqn = to_eqn(name)
    return r'''  Lemma simplify_%s %s X : %s = %s.
  Proof. lia. Qed.
  Hint Rewrite simplify_%s : zsimplify.''' % (name, ' '.join(sorted(set(eqn) - set('*+-() 0123456789X'))), eqn, simplify(eqn), name)

names = []
names += ['%sX%s%sX' % (a, b, c) for a in 'mp' for b in 'mp' for c in 'mp']
names += ['%sX%s_X%s' % (a, b, c) for a in 'mp' for b in 'mp' for c in 'mp']
names += ['X%s%s_X%s' % (a, b, c) for a in 'mp' for b in 'mp' for c in 'mp']
names += ['%sX%s_%sX' % (a, b, c) for a in 'mp' for b in 'mp' for c in 'mp']
names += ['X%s%s_%sX' % (a, b, c) for a in 'mp' for b in 'mp' for c in 'mp']
names += ['m2XpX', 'm2XpXpX']

print(r'''  (* Python code to generate these hints:
<<''')
print(open(__file__).read())
print(r'''
>> *)''')
for name in names:
    print(to_def(name))


>> *)
  Lemma simplify_mXmmX a b X : a - X - b - X = - 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXmmX : zsimplify.
  Lemma simplify_mXmpX a b X : a - X - b + X = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXmpX : zsimplify.
  Lemma simplify_mXpmX a b X : a - X + b - X = - 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXpmX : zsimplify.
  Lemma simplify_mXppX a b X : a - X + b + X = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXppX : zsimplify.
  Lemma simplify_pXmmX a b X : a + X - b - X = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXmmX : zsimplify.
  Lemma simplify_pXmpX a b X : a + X - b + X = 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXmpX : zsimplify.
  Lemma simplify_pXpmX a b X : a + X + b - X = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXpmX : zsimplify.
  Lemma simplify_pXppX a b X : a + X + b + X = 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXppX : zsimplify.
  Lemma simplify_mXm_Xm a b X : a - X - (X - b) = - 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXm_Xm : zsimplify.
  Lemma simplify_mXm_Xp a b X : a - X - (X + b) = - 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXm_Xp : zsimplify.
  Lemma simplify_mXp_Xm a b X : a - X + (X - b) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXp_Xm : zsimplify.
  Lemma simplify_mXp_Xp a b X : a - X + (X + b) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXp_Xp : zsimplify.
  Lemma simplify_pXm_Xm a b X : a + X - (X - b) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXm_Xm : zsimplify.
  Lemma simplify_pXm_Xp a b X : a + X - (X + b) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXm_Xp : zsimplify.
  Lemma simplify_pXp_Xm a b X : a + X + (X - b) = 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXp_Xm : zsimplify.
  Lemma simplify_pXp_Xp a b X : a + X + (X + b) = 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXp_Xp : zsimplify.
  Lemma simplify_Xmm_Xm a b X : X - a - (X - b) = - a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmm_Xm : zsimplify.
  Lemma simplify_Xmm_Xp a b X : X - a - (X + b) = - a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmm_Xp : zsimplify.
  Lemma simplify_Xmp_Xm a b X : X - a + (X - b) = 2 * X - a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmp_Xm : zsimplify.
  Lemma simplify_Xmp_Xp a b X : X - a + (X + b) = 2 * X - a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmp_Xp : zsimplify.
  Lemma simplify_Xpm_Xm a b X : X + a - (X - b) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpm_Xm : zsimplify.
  Lemma simplify_Xpm_Xp a b X : X + a - (X + b) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpm_Xp : zsimplify.
  Lemma simplify_Xpp_Xm a b X : X + a + (X - b) = 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpp_Xm : zsimplify.
  Lemma simplify_Xpp_Xp a b X : X + a + (X + b) = 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpp_Xp : zsimplify.
  Lemma simplify_mXm_mX a b X : a - X - (b - X) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXm_mX : zsimplify.
  Lemma simplify_mXm_pX a b X : a - X - (b + X) = - 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXm_pX : zsimplify.
  Lemma simplify_mXp_mX a b X : a - X + (b - X) = - 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXp_mX : zsimplify.
  Lemma simplify_mXp_pX a b X : a - X + (b + X) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_mXp_pX : zsimplify.
  Lemma simplify_pXm_mX a b X : a + X - (b - X) = 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXm_mX : zsimplify.
  Lemma simplify_pXm_pX a b X : a + X - (b + X) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXm_pX : zsimplify.
  Lemma simplify_pXp_mX a b X : a + X + (b - X) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXp_mX : zsimplify.
  Lemma simplify_pXp_pX a b X : a + X + (b + X) = 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_pXp_pX : zsimplify.
  Lemma simplify_Xmm_mX a b X : X - a - (b - X) = 2 * X - a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmm_mX : zsimplify.
  Lemma simplify_Xmm_pX a b X : X - a - (b + X) = - a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmm_pX : zsimplify.
  Lemma simplify_Xmp_mX a b X : X - a + (b - X) = - a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmp_mX : zsimplify.
  Lemma simplify_Xmp_pX a b X : X - a + (b + X) = 2 * X - a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xmp_pX : zsimplify.
  Lemma simplify_Xpm_mX a b X : X + a - (b - X) = 2 * X + a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpm_mX : zsimplify.
  Lemma simplify_Xpm_pX a b X : X + a - (b + X) = a - b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpm_pX : zsimplify.
  Lemma simplify_Xpp_mX a b X : X + a + (b - X) = a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpp_mX : zsimplify.
  Lemma simplify_Xpp_pX a b X : X + a + (b + X) = 2 * X + a + b.
  Proof. lia. Qed.
  Hint Rewrite simplify_Xpp_pX : zsimplify.
  Lemma simplify_m2XpX a X : a - 2 * X + X = - X + a.
  Proof. lia. Qed.
  Hint Rewrite simplify_m2XpX : zsimplify.
  Lemma simplify_m2XpXpX a X : a - 2 * X + X + X = a.
  Proof. lia. Qed.
  Hint Rewrite simplify_m2XpXpX : zsimplify.
End Z.