1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
Require Import Coq.ZArith.ZArith Coq.micromega.Lia Coq.ZArith.Znumtheory Coq.ZArith.Zpow_facts.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.ZSimplify.Core.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.ReplaceNegWithPos.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Div.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Local Open Scope Z_scope.
Module Z.
Lemma elim_mod : forall a b m, a = b -> a mod m = b mod m.
Proof. intros; subst; auto. Qed.
Hint Resolve elim_mod : zarith.
Lemma mod_add_full : forall a b c, (a + b * c) mod c = a mod c.
Proof. intros a b c; destruct (Z_zerop c); try subst; autorewrite with zsimplify; reflexivity. Qed.
Hint Rewrite mod_add_full : zsimplify.
Lemma mod_add_l_full : forall a b c, (a * b + c) mod b = c mod b.
Proof. intros a b c; rewrite (Z.add_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
Hint Rewrite mod_add_l_full : zsimplify.
Lemma mod_add'_full : forall a b c, (a + b * c) mod b = a mod b.
Proof. intros a b c; rewrite (Z.mul_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
Lemma mod_add_l'_full : forall a b c, (a * b + c) mod a = c mod a.
Proof. intros a b c; rewrite (Z.mul_comm _ b); autorewrite with zsimplify; reflexivity. Qed.
Hint Rewrite mod_add'_full mod_add_l'_full : zsimplify.
Lemma mod_add_l : forall a b c, b <> 0 -> (a * b + c) mod b = c mod b.
Proof. intros a b c H; rewrite (Z.add_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
Lemma mod_add' : forall a b c, b <> 0 -> (a + b * c) mod b = a mod b.
Proof. intros a b c H; rewrite (Z.mul_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
Lemma mod_add_l' : forall a b c, a <> 0 -> (a * b + c) mod a = c mod a.
Proof. intros a b c H; rewrite (Z.mul_comm _ b); autorewrite with zsimplify; reflexivity. Qed.
Lemma add_pow_mod_l : forall a b c, a <> 0 -> 0 < b ->
((a ^ b) + c) mod a = c mod a.
Proof.
intros a b c H H0; replace b with (b - 1 + 1) by ring;
rewrite Z.pow_add_r, Z.pow_1_r by omega; auto using Z.mod_add_l.
Qed.
Lemma mod_exp_0 : forall a x m, x > 0 -> m > 1 -> a mod m = 0 ->
a ^ x mod m = 0.
Proof.
intros a x m H H0 H1.
replace x with (Z.of_nat (Z.to_nat x)) in * by (apply Z2Nat.id; omega).
induction (Z.to_nat x). {
simpl in *; omega.
} {
rewrite Nat2Z.inj_succ in *.
rewrite Z.pow_succ_r by omega.
rewrite Z.mul_mod by omega.
case_eq n; intros. {
subst. simpl.
rewrite Zmod_1_l by omega.
rewrite H1.
apply Zmod_0_l.
} {
subst.
rewrite IHn by (rewrite Nat2Z.inj_succ in *; omega).
rewrite H1.
auto.
}
}
Qed.
Lemma mod_pow : forall (a m b : Z), (0 <= b) -> (m <> 0) ->
a ^ b mod m = (a mod m) ^ b mod m.
Proof.
intros a m b H H0; rewrite <- (Z2Nat.id b) by auto.
induction (Z.to_nat b) as [|n IHn]; auto.
rewrite Nat2Z.inj_succ.
do 2 rewrite Z.pow_succ_r by apply Nat2Z.is_nonneg.
rewrite Z.mul_mod by auto.
rewrite (Z.mul_mod (a mod m) ((a mod m) ^ Z.of_nat n) m) by auto.
rewrite <- IHn by auto.
rewrite Z.mod_mod by auto.
reflexivity.
Qed.
Lemma mod_to_nat x m (Hm:(0 < m)%Z) (Hx:(0 <= x)%Z) : (Z.to_nat x mod Z.to_nat m = Z.to_nat (x mod m))%nat.
pose proof Zdiv.mod_Zmod (Z.to_nat x) (Z.to_nat m) as H;
rewrite !Z2Nat.id in H by omega.
rewrite <-H by (change 0%nat with (Z.to_nat 0); rewrite Z2Nat.inj_iff; omega).
rewrite !Nat2Z.id; reflexivity.
Qed.
Lemma mul_div_eq_full : forall a m, m <> 0 -> m * (a / m) = (a - a mod m).
Proof.
intros a m H. rewrite (Z_div_mod_eq_full a m) at 2 by auto. ring.
Qed.
Hint Rewrite mul_div_eq_full using zutil_arith : zdiv_to_mod.
Hint Rewrite <-mul_div_eq_full using zutil_arith : zmod_to_div.
Lemma f_equal_mul_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x * y) mod m = (x' * y') mod m.
Proof.
intros H0 H1; rewrite Zmult_mod, H0, H1, <- Zmult_mod; reflexivity.
Qed.
Hint Resolve f_equal_mul_mod : zarith.
Lemma f_equal_add_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x + y) mod m = (x' + y') mod m.
Proof.
intros H0 H1; rewrite Zplus_mod, H0, H1, <- Zplus_mod; reflexivity.
Qed.
Hint Resolve f_equal_add_mod : zarith.
Lemma f_equal_opp_mod x x' m : x mod m = x' mod m -> (-x) mod m = (-x') mod m.
Proof.
intro H.
destruct (Z_zerop (x mod m)) as [H'|H'], (Z_zerop (x' mod m)) as [H''|H''];
try congruence.
{ rewrite !Z_mod_zero_opp_full by assumption; reflexivity. }
{ rewrite Z_mod_nz_opp_full, H, <- Z_mod_nz_opp_full by assumption; reflexivity. }
Qed.
Hint Resolve f_equal_opp_mod : zarith.
Lemma f_equal_sub_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x - y) mod m = (x' - y') mod m.
Proof.
rewrite <- !Z.add_opp_r; auto with zarith.
Qed.
Hint Resolve f_equal_sub_mod : zarith.
Lemma mul_div_eq : forall a m, m > 0 -> m * (a / m) = (a - a mod m).
Proof.
intros a m H.
rewrite (Z_div_mod_eq a m) at 2 by auto.
ring.
Qed.
Lemma mul_div_eq' : (forall a m, m > 0 -> (a / m) * m = (a - a mod m))%Z.
Proof.
intros a m H.
rewrite (Z_div_mod_eq a m) at 2 by auto.
ring.
Qed.
Hint Rewrite mul_div_eq mul_div_eq' using zutil_arith : zdiv_to_mod.
Hint Rewrite <- mul_div_eq' using zutil_arith : zmod_to_div.
Lemma mod_div_eq0 : forall a b, 0 < b -> (a mod b) / b = 0.
Proof.
intros.
apply Z.div_small.
auto using Z.mod_pos_bound.
Qed.
Hint Rewrite mod_div_eq0 using zutil_arith : zsimplify.
Local Lemma mod_pull_div_helper a b c X
(HX : forall a b c d e f g,
X a b c d e f g = if a =? 0 then c else 0)
: 0 <> b
-> 0 <> c
-> (a / b) mod c
= (a mod (c * b)) / b
+ if c <? 0 then - X ((a / b) mod c) (a mod (c * b)) ((a mod (c * b)) / b) a b c (a / b) else 0.
Proof.
intros; break_match; Z.ltb_to_lt; rewrite ?Z.sub_0_r, ?Z.add_0_r;
assert (0 <> c * b) by nia; Z.div_mod_to_quot_rem_in_goal; subst;
destruct_head'_or; destruct_head'_and;
try assert (b < 0) by omega;
try assert (c < 0) by omega;
Z.replace_all_neg_with_pos;
try match goal with
| [ H : ?c * ?b * ?q1 + ?r1 = ?b * (?c * ?q2 + _) + _ |- _ ]
=> assert (q1 = q2) by nia; progress subst
end;
rewrite ?HX; clear HX X;
try nia;
repeat match goal with
| [ |- - ?x = ?y ] => is_var y; assert (y <= 0) by nia; Z.replace_all_neg_with_pos
| [ |- - ?x = ?y + -_ ] => is_var y; assert (y <= 0) by nia; Z.replace_all_neg_with_pos
| [ H : -?x + (-?y + ?z) = -?w + ?v |- _ ]
=> assert (x + (y + -z) = w + -v) by omega; clear H
| [ H : ?c * ?b * ?q1 + (?b * ?q2 + ?r) = ?b * (?c * ?q1' + ?q2') + ?r' |- _ ]
=> assert (c * q1 + q2 = c * q1' + q2') by nia;
assert (r = r') by nia;
clear H
| [ H : -?x < -?y + ?z |- _ ] => assert (y + -z < x) by omega; clear H
| [ H : -?x + ?y <= 0 |- _ ] => assert (0 <= x + -y) by omega; clear H
| _ => progress Z.clean_neg
| _ => progress subst
end.
all:match goal with
| [ H : ?c * ?q + ?r = ?c * ?q' + ?r' |- _ ]
=> first [ constr_eq q q'; assert (r = r') by nia; clear H
| assert (q = q') by nia; assert (r = r') by nia; clear H
| lazymatch goal with
| [ H' : r' < c |- _ ]
=> destruct (Z_dec' r c) as [[?|?]|?]
| [ H' : r < c |- _ ]
=> destruct (Z_dec' r' c) as [[?|?]|?]
end;
subst;
[ assert (q = q') by nia; assert (r = r') by nia; clear H
| nia
| first [ assert (1 + q = q') by nia | assert (q = 1 + q') by nia ];
first [ assert (r' = 0) by nia | assert (r = 0) by nia ] ] ]
end.
all:try omega.
all:break_match; Z.ltb_to_lt; omega.
Qed.
Lemma mod_pull_div_full a b c
: (a / b) mod c
= if ((c <? 0) && ((a / b) mod c =? 0))%bool
then 0
else (a mod (c * b)) / b.
Proof.
destruct (Z_zerop b), (Z_zerop c); subst;
autorewrite with zsimplify; try reflexivity.
{ break_match; Z.ltb_to_lt; omega. }
{ erewrite mod_pull_div_helper at 1 by (omega || reflexivity); cbv beta.
destruct (c <? 0) eqn:?; simpl; [ | omega ].
break_innermost_match; omega. }
Qed.
Lemma mod_pull_div a b c
: 0 <= c -> (a / b) mod c = a mod (c * b) / b.
Proof. rewrite mod_pull_div_full; destruct (c <? 0) eqn:?; Z.ltb_to_lt; simpl; omega. Qed.
Lemma small_mod_eq a b n: a mod n = b mod n -> 0 <= a < n -> a = b mod n.
Proof. intros; rewrite <-(Z.mod_small a n); auto. Qed.
Lemma mod_bound_min_max l x u d (H : l <= x <= u)
: (if l / d =? u / d then Z.min (l mod d) (u mod d) else Z.min 0 (d + 1))
<= x mod d
<= if l / d =? u / d then Z.max (l mod d) (u mod d) else Z.max 0 (d - 1).
Proof.
destruct (Z_dec d 0) as [ [?|?] | ? ];
try solve [ subst; autorewrite with zsimplify; simpl; split; reflexivity
| repeat first [ progress Z.div_mod_to_quot_rem_in_goal
| progress subst
| progress break_innermost_match
| progress Z.ltb_to_lt
| progress destruct_head'_or
| progress destruct_head'_and
| progress apply Z.min_case_strong
| progress apply Z.max_case_strong
| progress intros
| omega
| match goal with
| [ H : ?x <= ?y, H' : ?y <= ?x |- _ ] => assert (x = y) by omega; clear H H'
| _ => progress subst
| [ H : ?d * ?q0 + ?r0 = ?d * ?q1 + ?r1 |- _ ]
=> assert (q0 = q1) by nia; subst q0
| [ H : ?d * ?q0 + ?r0 <= ?d * ?q1 + ?r1 |- _ ]
=> assert (q0 = q1) by nia; subst q0
end ] ].
Qed.
Lemma mod_mod_0_0_eq x y : x mod y = 0 -> y mod x = 0 -> x = y \/ x = - y \/ x = 0 \/ y = 0.
Proof.
destruct (Z_zerop x), (Z_zerop y); eauto.
Z.div_mod_to_quot_rem_in_goal; subst.
rewrite ?Z.add_0_r in *.
match goal with
| [ H : ?x = ?x * ?q * ?q' |- _ ]
=> assert (q * q' = 1) by nia;
destruct_head'_or;
first [ assert (q < 0) by nia
| assert (0 < q) by nia ];
first [ assert (q' < 0) by nia
| assert (0 < q') by nia ]
end;
nia.
Qed.
Lemma mod_mod_0_0_eq_pos x y : 0 < x -> 0 < y -> x mod y = 0 -> y mod x = 0 -> x = y.
Proof. intros ?? H0 H1; pose proof (mod_mod_0_0_eq x y H0 H1); omega. Qed.
Lemma mod_mod_trans x y z : y <> 0 -> x mod y = 0 -> y mod z = 0 -> x mod z = 0.
Proof.
destruct (Z_zerop x), (Z_zerop z); subst; autorewrite with zsimplify_const; auto; intro.
Z.generalize_div_eucl x y.
Z.generalize_div_eucl y z.
intros; subst.
rewrite ?Z.add_0_r in *.
rewrite <- Z.mul_assoc.
rewrite <- Zmult_mod_idemp_l, Z_mod_same_full.
autorewrite with zsimplify_const.
reflexivity.
Qed.
Lemma mod_opp_r a b : a mod (-b) = -((-a) mod b).
Proof. pose proof (Z.div_opp_r a b); Z.div_mod_to_quot_rem; nia. Qed.
Hint Resolve mod_opp_r : zarith.
Lemma mod_same_pow : forall a b c, 0 <= c <= b -> a ^ b mod a ^ c = 0.
Proof.
intros a b c H.
replace b with (b - c + c) by ring.
rewrite Z.pow_add_r by omega.
apply Z_mod_mult.
Qed.
Hint Rewrite mod_same_pow using zutil_arith : zsimplify.
Hint Resolve mod_same_pow : zarith.
Lemma mod_opp_l_z_iff a b (H : b <> 0) : a mod b = 0 <-> (-a) mod b = 0.
Proof.
split; intro H'; apply Z.mod_opp_l_z in H'; rewrite ?Z.opp_involutive in H'; assumption.
Qed.
Hint Rewrite <- mod_opp_l_z_iff using zutil_arith : zsimplify.
Lemma mod_small_sym a b : 0 <= a < b -> a = a mod b.
Proof. intros; symmetry; apply Z.mod_small; assumption. Qed.
Hint Resolve mod_small_sym : zarith.
Lemma mod_eq_le_to_eq a b : 0 < a <= b -> a mod b = 0 -> a = b.
Proof. pose proof (Z.mod_eq_le_div_1 a b); intros; Z.div_mod_to_quot_rem; nia. Qed.
Hint Resolve mod_eq_le_to_eq : zarith.
Lemma mod_neq_0_le_to_neq a b : a mod b <> 0 -> a <> b.
Proof. repeat intro; subst; autorewrite with zsimplify in *; lia. Qed.
Hint Resolve mod_neq_0_le_to_neq : zarith.
Lemma div_mod' a b : b <> 0 -> a = (a / b) * b + a mod b.
Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
Hint Rewrite <- div_mod' using zutil_arith : zsimplify.
Lemma div_mod'' a b : b <> 0 -> a = a mod b + b * (a / b).
Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
Hint Rewrite <- div_mod'' using zutil_arith : zsimplify.
Lemma div_mod''' a b : b <> 0 -> a = a mod b + (a / b) * b.
Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
Hint Rewrite <- div_mod''' using zutil_arith : zsimplify.
Lemma sub_mod_mod_0 x d : (x - x mod d) mod d = 0.
Proof.
destruct (Z_zerop d); subst; push_Zmod; autorewrite with zsimplify; reflexivity.
Qed.
Hint Resolve sub_mod_mod_0 : zarith.
Hint Rewrite sub_mod_mod_0 : zsimplify.
Lemma mod_small_n n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a mod b = a - n * b.
Proof. intros; erewrite Zmod_eq_full, Z.div_between by eassumption. reflexivity. Qed.
Hint Rewrite mod_small_n using zutil_arith : zsimplify.
Lemma mod_small_1 a b : b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
Proof. intros; rewrite (mod_small_n 1) by lia; lia. Qed.
Hint Rewrite mod_small_1 using zutil_arith : zsimplify.
Lemma mod_small_n_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> a mod b = a - (if (1 + n) * b <=? a then (1 + n) else n) * b.
Proof. intros; erewrite Zmod_eq_full, Z.div_between_if by eassumption; autorewrite with zsimplify_const. reflexivity. Qed.
Lemma mod_small_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a mod b = a - if b <=? a then b else 0.
Proof. intros; rewrite (mod_small_n_if 0) by lia; autorewrite with zsimplify_const. break_match; lia. Qed.
Lemma mul_mod_distr_r_full a b c : (a * c) mod (b * c) = (a mod b * c).
Proof.
destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
autorewrite with zsimplify; auto using Z.mul_mod_distr_r.
Qed.
Lemma mul_mod_distr_l_full a b c : (c * a) mod (c * b) = c * (a mod b).
Proof.
destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
autorewrite with zsimplify; auto using Z.mul_mod_distr_l.
Qed.
Lemma lt_mul_2_mod_sub : forall a b, b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
Proof.
intros a b H H0.
replace (a mod b) with ((1 * b + (a - b)) mod b) by (f_equal; ring).
rewrite Z.mod_add_l by auto.
apply Z.mod_small.
omega.
Qed.
Lemma mod_pow_r_split x b e1 e2 : 0 <= b -> 0 <= e1 <= e2 -> x mod b^e2 = (x mod b^e1) + (b^e1) * ((x / b^e1) mod b^(e2-e1)).
Proof.
destruct (Z_zerop b).
{ destruct (Z_zerop e1), (Z_zerop e2), (Z.eq_dec e1 e2); subst; intros; cbn; autorewrite with zsimplify_fast; lia. }
intros.
replace (b^e2) with (b^e1 * b^(e2 - e1)) by (autorewrite with pull_Zpow; f_equal; lia).
rewrite Z.rem_mul_r by auto with zarith.
reflexivity.
Qed.
End Z.
|