aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZUtil/Div.v
blob: 9b63fadae067b93991799c087a9abe85f9070f88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
Require Import Crypto.Util.ZUtil.Tactics.CompareToSgn.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Hints.ZArith.
Require Import Crypto.Util.ZUtil.Hints.PullPush.
Require Import Crypto.Util.ZUtil.ZSimplify.Core.
Local Open Scope Z_scope.

Module Z.
  Lemma div_mul' : forall a b : Z, b <> 0 -> (b * a) / b = a.
  Proof. intros. rewrite Z.mul_comm. apply Z.div_mul; auto. Qed.
  Hint Rewrite div_mul' using zutil_arith : zsimplify.

  Local Ltac replace_to_const c :=
    repeat match goal with
           | [ H : ?x = ?x |- _ ] => clear H
           | [ H : ?x = c, H' : context[?x] |- _ ] => rewrite H in H'
           | [ H : c = ?x, H' : context[?x] |- _ ] => rewrite <- H in H'
           | [ H : ?x = c |- context[?x] ] => rewrite H
           | [ H : c = ?x |- context[?x] ] => rewrite <- H
           end.

  Lemma lt_div_0 n m : n / m < 0 <-> ((n < 0 < m \/ m < 0 < n) /\ 0 < -(n / m)).
  Proof.
    Z.compare_to_sgn; rewrite Z.sgn_opp; simpl.
    pose proof (Zdiv_sgn n m) as H.
    pose proof (Z.sgn_spec (n / m)) as H'.
    repeat first [ progress intuition auto
                 | progress simpl in *
                 | congruence
                 | lia
                 | progress replace_to_const (-1)
                 | progress replace_to_const 0
                 | progress replace_to_const 1
                 | match goal with
                   | [ x : Z |- _ ] => destruct x
                   end ].
  Qed.

  Lemma div_add' a b c : c <> 0 -> (a + c * b) / c = a / c + b.
  Proof. intro; rewrite <- Z.div_add, (Z.mul_comm c); try lia. Qed.

  Lemma div_add_l' a b c : b <> 0 -> (b * a + c) / b = a + c / b.
  Proof. intro; rewrite <- Z.div_add_l, (Z.mul_comm b); lia. Qed.

  Hint Rewrite div_add_l' div_add' using zutil_arith : zsimplify.

  Lemma div_sub a b c : c <> 0 -> (a - b * c) / c = a / c - b.
  Proof. intros; rewrite <- !Z.add_opp_r, <- Z.div_add by lia; apply f_equal2; lia. Qed.

  Lemma div_sub' a b c : c <> 0 -> (a - c * b) / c = a / c - b.
  Proof. intro; rewrite <- div_sub, (Z.mul_comm c); try lia. Qed.

  Hint Rewrite div_sub div_sub' using zutil_arith : zsimplify.

  Lemma div_add_sub_l a b c d : b <> 0 -> (a * b + c - d) / b = a + (c - d) / b.
  Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l. Qed.

  Lemma div_add_sub_l' a b c d : b <> 0 -> (b * a + c - d) / b = a + (c - d) / b.
  Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l'. Qed.

  Lemma div_add_sub a b c d : c <> 0 -> (a + b * c - d) / c = (a - d) / c + b.
  Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l. Qed.

  Lemma div_add_sub' a b c d : c <> 0 -> (a + c * b - d) / c = (a - d) / c + b.
  Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l'. Qed.

  Hint Rewrite Z.div_add_sub Z.div_add_sub' Z.div_add_sub_l Z.div_add_sub_l' using zutil_arith : zsimplify.

  Lemma div_mul_skip a b k : 0 < b -> 0 < k -> a * b / k / b = a / k.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia.
    autorewrite with zsimplify. reflexivity.
  Qed.

  Lemma div_mul_skip' a b k : 0 < b -> 0 < k -> b * a / k / b = a / k.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia.
    autorewrite with zsimplify; reflexivity.
  Qed.

  Hint Rewrite Z.div_mul_skip Z.div_mul_skip' using zutil_arith : zsimplify.

  Lemma div_mul_skip_pow base e0 e1 x y : 0 < y -> 0 < base -> 0 <= e1 <= e0 -> x * base^e0 / y / base^e1 = x * base^(e0 - e1) / y.
  Proof.
    intros.
    assert (0 < base^e1) by auto with zarith.
    replace (base^e0) with (base^(e0 - e1) * base^e1) by (autorewrite with pull_Zpow zsimplify; reflexivity).
    rewrite !Z.mul_assoc.
    autorewrite with zsimplify; lia.
  Qed.
  Hint Rewrite div_mul_skip_pow using zutil_arith : zsimplify.

  Lemma div_mul_skip_pow' base e0 e1 x y : 0 < y -> 0 < base -> 0 <= e1 <= e0 -> base^e0 * x / y / base^e1 = base^(e0 - e1) * x / y.
  Proof.
    intros.
    rewrite (Z.mul_comm (base^e0) x), div_mul_skip_pow by lia.
    auto using f_equal2 with lia.
  Qed.
  Hint Rewrite div_mul_skip_pow' using zutil_arith : zsimplify.

  Lemma div_le_mono_nonneg a b c : 0 <= c -> a <= b -> a / c <= b / c.
  Proof.
    destruct (Z_zerop c).
    { subst; simpl; autorewrite with zsimplify; reflexivity. }
    { intros; apply Z.div_le_mono; omega. }
  Qed.
  Hint Resolve div_le_mono_nonneg : zarith.

  Lemma div_le_mono_pow_pos a b c e : a <= b -> a / Z.pos c ^ e <= b / Z.pos c ^ e.
  Proof. auto with zarith. Qed.

  Lemma div_nonneg a b : 0 <= a -> 0 <= b -> 0 <= a / b.
  Proof.
    destruct (Z_zerop b); subst; rewrite ?Zdiv_0_r; [ reflexivity | ].
    intros; apply Z.div_pos; omega.
  Qed.
  Hint Resolve div_nonneg : zarith.
End Z.