aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZUtil.v
blob: 936b4ce76fbb1b4c67ccd6b6f4e349c3e8a7c96a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
Require Import Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv.
Require Import Coq.Classes.RelationClasses Coq.Classes.Morphisms.
Require Import Coq.Structures.Equalities.
Require Import Coq.omega.Omega Coq.micromega.Psatz Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.Contains.
Require Import Crypto.Util.Tactics.Not.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Notations.
Require Import Coq.Lists.List.
Require Export Crypto.Util.FixCoqMistakes.
Require Export Crypto.Util.ZUtil.Definitions.
Require Export Crypto.Util.ZUtil.Div.
Require Export Crypto.Util.ZUtil.EquivModulo.
Require Export Crypto.Util.ZUtil.Hints.
Require Export Crypto.Util.ZUtil.Land.
Require Export Crypto.Util.ZUtil.Modulo.
Require Export Crypto.Util.ZUtil.Modulo.PullPush.
Require Export Crypto.Util.ZUtil.Morphisms.
Require Export Crypto.Util.ZUtil.Notations.
Require Export Crypto.Util.ZUtil.Pow2Mod.
Require Export Crypto.Util.ZUtil.Quot.
Require Export Crypto.Util.ZUtil.Sgn.
Require Export Crypto.Util.ZUtil.Tactics.
Require Export Crypto.Util.ZUtil.Testbit.
Require Export Crypto.Util.ZUtil.ZSimplify.
Import Nat.
Local Open Scope Z.

Module Z.
  Lemma div_lt_upper_bound' a b q : 0 < b -> a < q * b -> a / b < q.
  Proof. intros; apply Z.div_lt_upper_bound; nia. Qed.
  Hint Resolve div_lt_upper_bound' : zarith.

  Lemma mul_comm3 x y z : x * (y * z) = y * (x * z).
  Proof. lia. Qed.

  Lemma positive_is_nonzero : forall x, x > 0 -> x <> 0.
  Proof. intros; omega. Qed.
  Hint Resolve positive_is_nonzero : zarith.

  Lemma div_positive_gt_0 : forall a b, a > 0 -> b > 0 -> a mod b = 0 ->
    a / b > 0.
  Proof.
    intros; rewrite Z.gt_lt_iff.
    apply Z.div_str_pos.
    split; intuition auto with omega.
    apply Z.divide_pos_le; try (apply Zmod_divide); omega.
  Qed.

  Lemma pos_pow_nat_pos : forall x n,
    Z.pos x ^ Z.of_nat n > 0.
  Proof.
    do 2 (intros; induction n; subst; simpl in *; auto with zarith).
    rewrite <- Pos.add_1_r, Zpower_pos_is_exp.
    apply Zmult_gt_0_compat; auto; reflexivity.
  Qed.

  (** TODO: Should we get rid of this duplicate? *)
  Notation gt0_neq0 := positive_is_nonzero (only parsing).

  Lemma pow_Z2N_Zpow : forall a n, 0 <= a ->
    ((Z.to_nat a) ^ n = Z.to_nat (a ^ Z.of_nat n)%Z)%nat.
  Proof.
    intros; induction n; try reflexivity.
    rewrite Nat2Z.inj_succ.
    rewrite pow_succ_r by apply le_0_n.
    rewrite Z.pow_succ_r by apply Zle_0_nat.
    rewrite IHn.
    rewrite Z2Nat.inj_mul; auto using Z.pow_nonneg.
  Qed.

  Lemma pow_Zpow : forall a n : nat, Z.of_nat (a ^ n) = Z.of_nat a ^ Z.of_nat n.
  Proof with auto using Zle_0_nat, Z.pow_nonneg.
    intros; apply Z2Nat.inj...
    rewrite <- pow_Z2N_Zpow, !Nat2Z.id...
  Qed.
  Hint Rewrite pow_Zpow : push_Zof_nat.
  Hint Rewrite <- pow_Zpow : pull_Zof_nat.

  Lemma divide_mul_div: forall a b c (a_nonzero : a <> 0) (c_nonzero : c <> 0),
    (a | b * (a / c)) -> (c | a) -> (c | b).
  Proof.
    intros ? ? ? ? ? divide_a divide_c_a; do 2 Z.divide_exists_mul.
    rewrite divide_c_a in divide_a.
    rewrite Z.div_mul' in divide_a by auto.
    replace (b * k) with (k * b) in divide_a by ring.
    replace (c * k * k0) with (k * (k0 * c)) in divide_a by ring.
    rewrite Z.mul_cancel_l in divide_a by (intuition auto with nia; rewrite H in divide_c_a; ring_simplify in divide_a; intuition).
    eapply Zdivide_intro; eauto.
  Qed.

  Lemma divide2_even_iff : forall n, (2 | n) <-> Z.even n = true.
  Proof.
    intro; split. {
      intro divide2_n.
      Z.divide_exists_mul; [ | pose proof (Z.mod_pos_bound n 2); omega].
      rewrite divide2_n.
      apply Z.even_mul.
    } {
      intro n_even.
      pose proof (Zmod_even n).
      rewrite n_even in H.
      apply Zmod_divide; omega || auto.
    }
  Qed.

  Lemma prime_odd_or_2 : forall p (prime_p : prime p), p = 2 \/ Z.odd p = true.
  Proof.
    intros.
    apply Decidable.imp_not_l; try apply Z.eq_decidable.
    intros p_neq2.
    pose proof (Zmod_odd p) as mod_odd.
    destruct (Sumbool.sumbool_of_bool (Z.odd p)) as [? | p_not_odd]; auto.
    rewrite p_not_odd in mod_odd.
    apply Zmod_divides in mod_odd; try omega.
    destruct mod_odd as [c c_id].
    rewrite Z.mul_comm in c_id.
    apply Zdivide_intro in c_id.
    apply prime_divisors in c_id; auto.
    destruct c_id; [omega | destruct H; [omega | destruct H; auto] ].
    pose proof (prime_ge_2 p prime_p); omega.
  Qed.

  Lemma shiftr_add_shiftl_high : forall n m a b, 0 <= n <= m -> 0 <= a < 2 ^ n ->
    Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr b (m - n).
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2 by omega.
    replace (2 ^ m) with (2 ^ n * 2 ^ (m - n)) by
      (rewrite <-Z.pow_add_r by omega; f_equal; ring).
    rewrite <-Z.div_div, Z.div_add, (Z.div_small a) ; try solve
      [assumption || apply Z.pow_nonzero || apply Z.pow_pos_nonneg; omega].
    f_equal; ring.
  Qed.
  Hint Rewrite Z.shiftr_add_shiftl_high using zutil_arith : pull_Zshift.
  Hint Rewrite <- Z.shiftr_add_shiftl_high using zutil_arith : push_Zshift.

  Lemma shiftr_add_shiftl_low : forall n m a b, 0 <= m <= n -> 0 <= a < 2 ^ n ->
    Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr a m + Z.shiftr b (m - n).
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2, Z.shiftr_mul_pow2 by omega.
    replace (2 ^ n) with (2 ^ (n - m) * 2 ^ m) by
      (rewrite <-Z.pow_add_r by omega; f_equal; ring).
    rewrite Z.mul_assoc, Z.div_add by (apply Z.pow_nonzero; omega).
    repeat f_equal; ring.
  Qed.
  Hint Rewrite Z.shiftr_add_shiftl_low using zutil_arith : pull_Zshift.
  Hint Rewrite <- Z.shiftr_add_shiftl_low using zutil_arith : push_Zshift.

  Lemma testbit_add_shiftl_high : forall i, (0 <= i) -> forall a b n, (0 <= n <= i) ->
    0 <= a < 2 ^ n ->
    Z.testbit (a + Z.shiftl b n) i = Z.testbit b (i - n).
  Proof.
    intros ? ?.
    apply natlike_ind with (x := i); intros; try assumption;
      (destruct (Z_eq_dec 0 n); [ subst; rewrite Z.pow_0_r in *;
       replace a with 0 by omega; f_equal; ring | ]); try omega.
    rewrite <-Z.add_1_r at 1. rewrite <-Z.shiftr_spec by assumption.
    replace (Z.succ x - n) with (x - (n - 1)) by ring.
    rewrite shiftr_add_shiftl_low, <-Z.shiftl_opp_r with (a := b) by omega.
    rewrite <-H1 with (a := Z.shiftr a 1); try omega; [ repeat f_equal; ring | ].
    rewrite Z.shiftr_div_pow2 by omega.
    split; apply Z.div_pos || apply Z.div_lt_upper_bound;
      try solve [rewrite ?Z.pow_1_r; omega].
    rewrite <-Z.pow_add_r by omega.
    replace (1 + (n - 1)) with n by ring; omega.
  Qed.
  Hint Rewrite testbit_add_shiftl_high using zutil_arith : Ztestbit.

  Lemma nonneg_pow_pos a b : 0 < a -> 0 < a^b -> 0 <= b.
  Proof.
    destruct (Z_lt_le_dec b 0); intros; auto.
    erewrite Z.pow_neg_r in * by eassumption.
    omega.
  Qed.
  Hint Resolve nonneg_pow_pos (fun n => nonneg_pow_pos 2 n Z.lt_0_2) : zarith.
  Lemma nonneg_pow_pos_helper a b dummy : 0 < a -> 0 <= dummy < a^b -> 0 <= b.
  Proof. eauto with zarith omega. Qed.
  Hint Resolve nonneg_pow_pos_helper (fun n dummy => nonneg_pow_pos_helper 2 n dummy Z.lt_0_2) : zarith.

  Lemma testbit_add_shiftl_full i (Hi : 0 <= i) a b n (Ha : 0 <= a < 2^n)
    : Z.testbit (a + b << n) i
      = if (i <? n) then Z.testbit a i else Z.testbit b (i - n).
  Proof.
    assert (0 < 2^n) by omega.
    assert (0 <= n) by eauto 2 with zarith.
    pose proof (Zlt_cases i n); break_match; autorewrite with Ztestbit; reflexivity.
  Qed.
  Hint Rewrite testbit_add_shiftl_full using zutil_arith : Ztestbit.

  Lemma land_add_land : forall n m a b, (m <= n)%nat ->
    Z.land ((Z.land a (Z.ones (Z.of_nat n))) + (Z.shiftl b (Z.of_nat n))) (Z.ones (Z.of_nat m)) = Z.land a (Z.ones (Z.of_nat m)).
  Proof.
    intros.
    rewrite !Z.land_ones by apply Nat2Z.is_nonneg.
    rewrite Z.shiftl_mul_pow2 by apply Nat2Z.is_nonneg.
    replace (b * 2 ^ Z.of_nat n) with
      ((b * 2 ^ Z.of_nat (n - m)) * 2 ^ Z.of_nat m) by
      (rewrite (le_plus_minus m n) at 2; try assumption;
       rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg; ring).
    rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 (Z.of_nat m)); omega).
    symmetry. apply Znumtheory.Zmod_div_mod; try (apply Z.pow_pos_nonneg; omega).
    rewrite (le_plus_minus m n) by assumption.
    rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg.
    apply Z.divide_factor_l.
  Qed.

  Lemma div_pow2succ : forall n x, (0 <= x) ->
    n / 2 ^ Z.succ x = Z.div2 (n / 2 ^ x).
  Proof.
    intros.
    rewrite Z.pow_succ_r, Z.mul_comm by auto.
    rewrite <- Z.div_div by (try apply Z.pow_nonzero; omega).
    rewrite Zdiv2_div.
    reflexivity.
  Qed.

  Lemma shiftr_succ : forall n x,
    Z.shiftr n (Z.succ x) = Z.shiftr (Z.shiftr n x) 1.
  Proof.
    intros.
    rewrite Z.shiftr_shiftr by omega.
    reflexivity.
  Qed.
  Hint Rewrite Z.shiftr_succ using zutil_arith : push_Zshift.
  Hint Rewrite <- Z.shiftr_succ using zutil_arith : pull_Zshift.

  Lemma pow2_lt_or_divides : forall a b, 0 <= b ->
    2 ^ a < 2 ^ b \/ (2 ^ a) mod 2 ^ b = 0.
  Proof.
    intros.
    destruct (Z_lt_dec a b); [left|right].
    { apply Z.pow_lt_mono_r; auto; omega. }
    { replace a with (a - b + b) by ring.
      rewrite Z.pow_add_r by omega.
      apply Z.mod_mul, Z.pow_nonzero; omega. }
  Qed.

  Lemma odd_mod : forall a b, (b <> 0)%Z ->
    Z.odd (a mod b) = if Z.odd b then xorb (Z.odd a) (Z.odd (a / b)) else Z.odd a.
  Proof.
    intros.
    rewrite Zmod_eq_full by assumption.
    rewrite <-Z.add_opp_r, Z.odd_add, Z.odd_opp, Z.odd_mul.
    case_eq (Z.odd b); intros; rewrite ?Bool.andb_true_r, ?Bool.andb_false_r; auto using Bool.xorb_false_r.
  Qed.

  Lemma mod_same_pow : forall a b c, 0 <= c <= b -> a ^ b mod a ^ c = 0.
  Proof.
    intros.
    replace b with (b - c + c) by ring.
    rewrite Z.pow_add_r by omega.
    apply Z_mod_mult.
  Qed.
  Hint Rewrite mod_same_pow using zutil_arith : zsimplify.

  Lemma ones_succ : forall x, (0 <= x) ->
    Z.ones (Z.succ x) = 2 ^ x + Z.ones x.
  Proof.
    unfold Z.ones; intros.
    rewrite !Z.shiftl_1_l.
    rewrite Z.add_pred_r.
    apply Z.succ_inj.
    rewrite !Z.succ_pred.
    rewrite Z.pow_succ_r; omega.
  Qed.

  Lemma div_floor : forall a b c, 0 < b -> a < b * (Z.succ c) -> a / b <= c.
  Proof.
    intros.
    apply Z.lt_succ_r.
    apply Z.div_lt_upper_bound; try omega.
  Qed.

  Lemma shiftr_1_r_le : forall a b, a <= b ->
    Z.shiftr a 1 <= Z.shiftr b 1.
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.pow_1_r by omega.
    apply Z.div_le_mono; omega.
  Qed.
  Hint Resolve shiftr_1_r_le : zarith.

  Lemma shiftr_le : forall a b i : Z, 0 <= i -> a <= b -> a >> i <= b >> i.
  Proof.
    intros until 1. revert a b. apply natlike_ind with (x := i); intros; auto.
    rewrite !shiftr_succ, shiftr_1_r_le; eauto. reflexivity.
  Qed.
  Hint Resolve shiftr_le : zarith.

  Lemma ones_pred : forall i, 0 < i -> Z.ones (Z.pred i) = Z.shiftr (Z.ones i) 1.
  Proof.
    induction i; [ | | pose proof (Pos2Z.neg_is_neg p) ]; try omega.
    intros.
    unfold Z.ones.
    rewrite !Z.shiftl_1_l, Z.shiftr_div_pow2, <-!Z.sub_1_r, Z.pow_1_r, <-!Z.add_opp_r by omega.
    replace (2 ^ (Z.pos p)) with (2 ^ (Z.pos p - 1)* 2).
    rewrite Z.div_add_l by omega.
    reflexivity.
    change 2 with (2 ^ 1) at 2.
    rewrite <-Z.pow_add_r by (pose proof (Pos2Z.is_pos p); omega).
    f_equal. omega.
  Qed.
  Hint Rewrite <- ones_pred using zutil_arith : push_Zshift.

  Lemma shiftr_ones' : forall a n, 0 <= a < 2 ^ n -> forall i, (0 <= i) ->
    Z.shiftr a i <= Z.ones (n - i) \/ n <= i.
  Proof.
    intros until 1.
    apply natlike_ind.
    + unfold Z.ones.
      rewrite Z.shiftr_0_r, Z.shiftl_1_l, Z.sub_0_r.
      omega.
    + intros.
      destruct (Z_lt_le_dec x n); try omega.
      intuition auto with zarith lia.
      left.
      rewrite shiftr_succ.
      replace (n - Z.succ x) with (Z.pred (n - x)) by omega.
      rewrite Z.ones_pred by omega.
      apply Z.shiftr_1_r_le.
      assumption.
  Qed.

  Lemma shiftr_ones : forall a n i, 0 <= a < 2 ^ n -> (0 <= i) -> (i <= n) ->
    Z.shiftr a i <= Z.ones (n - i) .
  Proof.
    intros a n i G G0 G1.
    destruct (Z_le_lt_eq_dec i n G1).
    + destruct (Z.shiftr_ones' a n G i G0); omega.
    + subst; rewrite Z.sub_diag.
      destruct (Z_eq_dec a 0).
      - subst; rewrite Z.shiftr_0_l; reflexivity.
      - rewrite Z.shiftr_eq_0; try omega; try reflexivity.
        apply Z.log2_lt_pow2; omega.
  Qed.
  Hint Resolve shiftr_ones : zarith.

  Lemma shiftr_upper_bound : forall a n, 0 <= n -> 0 <= a <= 2 ^ n -> Z.shiftr a n <= 1.
  Proof.
    intros a ? ? [a_nonneg a_upper_bound].
    apply Z_le_lt_eq_dec in a_upper_bound.
    destruct a_upper_bound.
    + destruct (Z_eq_dec 0 a).
      - subst; rewrite Z.shiftr_0_l; omega.
      - rewrite Z.shiftr_eq_0; auto; try omega.
        apply Z.log2_lt_pow2; auto; omega.
    + subst.
      rewrite Z.shiftr_div_pow2 by assumption.
      rewrite Z.div_same; try omega.
      assert (0 < 2 ^ n) by (apply Z.pow_pos_nonneg; omega).
      omega.
  Qed.
  Hint Resolve shiftr_upper_bound : zarith.

  Lemma lor_shiftl : forall a b n, 0 <= n -> 0 <= a < 2 ^ n ->
    Z.lor a (Z.shiftl b n) = a + (Z.shiftl b n).
  Proof.
    intros.
    apply Z.bits_inj'; intros t ?.
    rewrite Z.lor_spec, Z.shiftl_spec by assumption.
    destruct (Z_lt_dec t n).
    + rewrite Z.testbit_add_shiftl_low by omega.
      rewrite Z.testbit_neg_r with (n := t - n) by omega.
      apply Bool.orb_false_r.
    + rewrite testbit_add_shiftl_high by omega.
      replace (Z.testbit a t) with false; [ apply Bool.orb_false_l | ].
      symmetry.
      apply Z.testbit_false; try omega.
      rewrite Z.div_small; try reflexivity.
      split; try eapply Z.lt_le_trans with (m := 2 ^ n); try omega.
      apply Z.pow_le_mono_r; omega.
  Qed.
  Hint Rewrite <- Z.lor_shiftl using zutil_arith : convert_to_Ztestbit.

  Lemma lor_shiftl' : forall a b n, 0 <= n -> 0 <= a < 2 ^ n ->
    Z.lor (Z.shiftl b n) a = (Z.shiftl b n) + a.
  Proof.
    intros; rewrite Z.lor_comm, Z.add_comm; apply lor_shiftl; assumption.
  Qed.
  Hint Rewrite <- Z.lor_shiftl' using zutil_arith : convert_to_Ztestbit.

  Lemma shiftl_spec_full a n m
    : Z.testbit (a << n) m = if Z_lt_dec m n
                             then false
                             else if Z_le_dec 0 m
                                  then Z.testbit a (m - n)
                                  else false.
  Proof.
    repeat break_match; auto using Z.shiftl_spec_low, Z.shiftl_spec, Z.testbit_neg_r with omega.
  Qed.
  Hint Rewrite shiftl_spec_full : Ztestbit_full.

  Lemma shiftr_spec_full a n m
    : Z.testbit (a >> n) m = if Z_lt_dec m (-n)
                             then false
                             else if Z_le_dec 0 m
                                  then Z.testbit a (m + n)
                                  else false.
  Proof.
    rewrite <- Z.shiftl_opp_r, shiftl_spec_full, Z.sub_opp_r; reflexivity.
  Qed.
  Hint Rewrite shiftr_spec_full : Ztestbit_full.

  Lemma lnot_sub1 x : Z.lnot (x-1) = (-x).
  Proof.
    replace (-x) with (- (1) - (x - 1)) by omega.
    rewrite <-(Z.add_lnot_diag (x-1)); omega.
  Qed.

  Lemma lnot_opp x : Z.lnot (- x) = x-1.
  Proof.
    rewrite <-Z.lnot_involutive, lnot_sub1; reflexivity.
  Qed.

  Lemma testbit_sub_pow2 n i x (i_range:0 <= i < n) (x_range:0 < x < 2 ^ n) :
    Z.testbit (2 ^ n - x) i = negb (Z.testbit (x - 1)  i).
  Proof.
    rewrite <-Z.lnot_spec, lnot_sub1 by omega.
    rewrite <-(Z.mod_pow2_bits_low (-x) _ _ (proj2 i_range)).
    f_equal.
    rewrite Z.mod_opp_l_nz; autorewrite with zsimplify; omega.
  Qed.

  Lemma ones_nonneg : forall i, (0 <= i) -> 0 <= Z.ones i.
  Proof.
    apply natlike_ind.
    + unfold Z.ones. simpl; omega.
    + intros.
      rewrite Z.ones_succ by assumption.
      Z.zero_bounds.
  Qed.
  Hint Resolve ones_nonneg : zarith.

  Lemma ones_pos_pos : forall i, (0 < i) -> 0 < Z.ones i.
  Proof.
    intros.
    unfold Z.ones.
    rewrite Z.shiftl_1_l.
    apply Z.lt_succ_lt_pred.
    apply Z.pow_gt_1; omega.
  Qed.
  Hint Resolve ones_pos_pos : zarith.

  Lemma pow2_mod_id_iff : forall a n, 0 <= n ->
                                      (Z.pow2_mod a n = a <-> 0 <= a < 2 ^ n).
  Proof.
    intros.
    rewrite Z.pow2_mod_spec by assumption.
    assert (0 < 2 ^ n) by Z.zero_bounds.
    rewrite Z.mod_small_iff by omega.
    split; intros; intuition omega.
  Qed.

  Lemma testbit_false_bound : forall a x, 0 <= x ->
    (forall n, ~ (n < x) -> Z.testbit a n = false) ->
    a < 2 ^ x.
  Proof.
    intros.
    assert (a = Z.pow2_mod a x). {
     apply Z.bits_inj'; intros.
     rewrite Z.testbit_pow2_mod by omega; break_match; auto.
    }
    rewrite H1.
    rewrite Z.pow2_mod_spec; try apply Z.mod_pos_bound; Z.zero_bounds.
  Qed.

  Lemma lor_range : forall x y n, 0 <= x < 2 ^ n -> 0 <= y < 2 ^ n ->
                                  0 <= Z.lor x y < 2 ^ n.
  Proof.
    intros; assert (0 <= n) by auto with zarith omega.
    repeat match goal with
           | |- _ => progress intros
           | |- _ => rewrite Z.lor_spec
           | |- _ => rewrite Z.testbit_eqb by auto with zarith omega
           | |- _ => rewrite !Z.div_small by (split; try omega; eapply Z.lt_le_trans;
                             [ intuition eassumption | apply Z.pow_le_mono_r; omega])
           | |- _ => split
           | |- _ => apply testbit_false_bound
           | |- _ => solve [auto with zarith]
           | |- _ => solve [apply Z.lor_nonneg; intuition auto]
           end.
  Qed.
  Hint Resolve lor_range : zarith.

  Lemma lor_shiftl_bounds : forall x y n m,
      (0 <= n)%Z -> (0 <= m)%Z ->
      (0 <= x < 2 ^ m)%Z ->
      (0 <= y < 2 ^ n)%Z ->
      (0 <= Z.lor y (Z.shiftl x n) < 2 ^ (n + m))%Z.
  Proof.
    intros.
    apply Z.lor_range.
    { split; try omega.
      apply Z.lt_le_trans with (m := (2 ^ n)%Z); try omega.
      apply Z.pow_le_mono_r; omega. }
    { rewrite Z.shiftl_mul_pow2 by omega.
      rewrite Z.pow_add_r by omega.
      split; Z.zero_bounds.
      rewrite Z.mul_comm.
      apply Z.mul_lt_mono_pos_l; omega. }
  Qed.

  Lemma N_le_1_l : forall p, (1 <= N.pos p)%N.
  Proof.
    destruct p; cbv; congruence.
  Qed.

  Lemma Pos_land_upper_bound_l : forall a b, (Pos.land a b <= N.pos a)%N.
  Proof.
    induction a; destruct b; intros; try solve [cbv; congruence];
      simpl; specialize (IHa b); case_eq (Pos.land a b); intro; simpl;
      try (apply N_le_1_l || apply N.le_0_l); intro land_eq;
      rewrite land_eq in *; unfold N.le, N.compare in *;
      rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI, ?Pos.compare_xO_xO;
      try assumption.
    destruct (p ?=a)%positive; cbv; congruence.
  Qed.

  Lemma land_upper_bound_l : forall a b, (0 <= a) -> (0 <= b) ->
    Z.land a b <= a.
  Proof.
    intros.
    destruct a, b; try solve [exfalso; auto]; try solve [cbv; congruence].
    cbv [Z.land].
    rewrite <-N2Z.inj_pos, <-N2Z.inj_le.
    auto using Pos_land_upper_bound_l.
  Qed.

  Lemma land_upper_bound_r : forall a b, (0 <= a) -> (0 <= b) ->
    Z.land a b <= b.
  Proof.
    intros.
    rewrite Z.land_comm.
    auto using Z.land_upper_bound_l.
  Qed.

  Lemma le_fold_right_max : forall low l x, (forall y, In y l -> low <= y) ->
    In x l -> x <= fold_right Z.max low l.
  Proof.
    induction l; intros ? lower_bound In_list; [cbv [In] in *; intuition | ].
    simpl.
    destruct (in_inv In_list); subst.
    + apply Z.le_max_l.
    + etransitivity.
      - apply IHl; auto; intuition auto with datatypes.
      - apply Z.le_max_r.
  Qed.

  Lemma le_fold_right_max_initial : forall low l, low <= fold_right Z.max low l.
  Proof.
    induction l; intros; try reflexivity.
    etransitivity; [ apply IHl | apply Z.le_max_r ].
  Qed.

  Lemma add_compare_mono_r: forall n m p, (n + p ?= m + p) = (n ?= m).
  Proof.
    intros.
    rewrite <-!(Z.add_comm p).
    apply Z.add_compare_mono_l.
  Qed.

  Lemma compare_add_shiftl : forall x1 y1 x2 y2 n, 0 <= n ->
    Z.pow2_mod x1 n = x1 -> Z.pow2_mod x2 n = x2  ->
    x1 + (y1 << n) ?= x2 + (y2 << n) =
      if Z_eq_dec y1 y2
      then x1 ?= x2
      else y1 ?= y2.
  Proof.
    repeat match goal with
           | |- _ => progress intros
           | |- _ => progress subst y1
           | |- _ => rewrite Z.shiftl_mul_pow2 by omega
           | |- _ => rewrite add_compare_mono_r
           | |- _ => rewrite <-Z.mul_sub_distr_r
           | |- _ => break_innermost_match_step
           | H : Z.pow2_mod _ _ = _ |- _ => rewrite pow2_mod_id_iff in H by omega
           | H : ?a <> ?b |- _ = (?a ?= ?b) =>
             case_eq (a ?= b); rewrite ?Z.compare_eq_iff, ?Z.compare_gt_iff, ?Z.compare_lt_iff
           | |- _ + (_ * _) > _ + (_ * _) => cbv [Z.gt]
           | |- _ + (_ * ?x) < _ + (_ * ?x) =>
             apply Z.lt_sub_lt_add; apply Z.lt_le_trans with (m := 1 * x); [omega|]
           | |- _ => apply Z.mul_le_mono_nonneg_r; omega
           | |- _ => reflexivity
           | |- _ => congruence
           end.
  Qed.

  Lemma ones_le x y : x <= y -> Z.ones x <= Z.ones y.
  Proof.
    rewrite !Z.ones_equiv; auto with zarith.
  Qed.
  Hint Resolve ones_le : zarith.

  Lemma mul_div_le x y z
        (Hx : 0 <= x) (Hy : 0 <= y) (Hz : 0 < z)
        (Hyz : y <= z)
    : x * y / z <= x.
  Proof.
    transitivity (x * z / z); [ | rewrite Z.div_mul by lia; lia ].
    apply Z_div_le; nia.
  Qed.

  Hint Resolve mul_div_le : zarith.

  Lemma div_mul_diff_exact a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * a / b = c * (a / b) + (c * (a mod b)) / b.
  Proof.
    rewrite (Z_div_mod_eq a b) at 1 by lia.
    rewrite Z.mul_add_distr_l.
    replace (c * (b * (a / b))) with ((c * (a / b)) * b) by lia.
    rewrite Z.div_add_l by lia.
    lia.
  Qed.

  Lemma div_mul_diff_exact' a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * (a / b) = c * a / b - (c * (a mod b)) / b.
  Proof.
    rewrite div_mul_diff_exact by assumption; lia.
  Qed.

  Lemma div_mul_diff_exact'' a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : a * c / b = (a / b) * c + (c * (a mod b)) / b.
  Proof.
    rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia.
  Qed.

  Lemma div_mul_diff_exact''' a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : (a / b) * c = a * c / b - (c * (a mod b)) / b.
  Proof.
    rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia.
  Qed.

  Lemma div_mul_diff a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * a / b - c * (a / b) <= c.
  Proof.
    rewrite div_mul_diff_exact by assumption.
    ring_simplify; auto with zarith.
  Qed.

  Lemma div_mul_le_le a b c
    :  0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b <= c * (a / b) + c.
  Proof.
    pose proof (Z.div_mul_diff a b c); split; try apply Z.div_mul_le; lia.
  Qed.

  Lemma div_mul_le_le_offset a b c
    : 0 <= a -> 0 < b -> 0 <= c -> c * a / b - c <= c * (a / b).
  Proof.
    pose proof (Z.div_mul_le_le a b c); lia.
  Qed.

  Hint Resolve Zmult_le_compat_r Zmult_le_compat_l Z_div_le Z.div_mul_le_le_offset Z.add_le_mono Z.sub_le_mono : zarith.

  Lemma log2_nonneg' n a : n <= 0 -> n <= Z.log2 a.
  Proof.
    intros; transitivity 0; auto with zarith.
  Qed.

  Hint Resolve log2_nonneg' : zarith.

  Lemma le_lt_to_log2 x y z : 0 <= z -> 0 < y -> 2^x <= y < 2^z -> x <= Z.log2 y < z.
  Proof.
    destruct (Z_le_gt_dec 0 x); auto with concl_log2 lia.
  Qed.

  Lemma div_x_y_x x y : 0 < x -> 0 < y -> x / y / x = 1 / y.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm y x), <- Z.div_div, Z.div_same by lia.
    reflexivity.
  Qed.

  Hint Rewrite div_x_y_x using zutil_arith : zsimplify.

  Lemma mod_opp_l_z_iff a b (H : b <> 0) : a mod b = 0 <-> (-a) mod b = 0.
  Proof.
    split; intro H'; apply Z.mod_opp_l_z in H'; rewrite ?Z.opp_involutive in H'; assumption.
  Qed.

  Lemma opp_eq_0_iff a : -a = 0 <-> a = 0.
  Proof. omega. Qed.

  Hint Rewrite <- mod_opp_l_z_iff using zutil_arith : zsimplify.
  Hint Rewrite opp_eq_0_iff : zsimplify.

  Lemma sub_pos_bound a b X : 0 <= a < X -> 0 <= b < X -> -X < a - b < X.
  Proof. lia. Qed.

  Lemma div_opp_l_complete a b (Hb : b <> 0) : -a/b = -(a/b) - (if Z_zerop (a mod b) then 0 else 1).
  Proof.
    destruct (Z_zerop (a mod b)); autorewrite with zsimplify push_Zopp; reflexivity.
  Qed.

  Lemma div_opp_l_complete' a b (Hb : b <> 0) : -(a/b) = -a/b + (if Z_zerop (a mod b) then 0 else 1).
  Proof.
    destruct (Z_zerop (a mod b)); autorewrite with zsimplify pull_Zopp; lia.
  Qed.

  Hint Rewrite Z.div_opp_l_complete using zutil_arith : pull_Zopp.
  Hint Rewrite Z.div_opp_l_complete' using zutil_arith : push_Zopp.

  Lemma shiftl_opp_l a n
    : Z.shiftl (-a) n = - Z.shiftl a n - (if Z_zerop (a mod 2 ^ (- n)) then 0 else 1).
  Proof.
    destruct (Z_dec 0 n) as [ [?|?] | ? ];
      subst;
      rewrite ?Z.pow_neg_r by omega;
      autorewrite with zsimplify_const;
      [ | | simpl; omega ].
    { rewrite !Z.shiftl_mul_pow2 by omega.
      nia. }
    { rewrite !Z.shiftl_div_pow2 by omega.
      rewrite Z.div_opp_l_complete by auto with zarith.
      reflexivity. }
  Qed.
  Hint Rewrite shiftl_opp_l : push_Zshift.
  Hint Rewrite <- shiftl_opp_l : pull_Zshift.

  Lemma shiftr_opp_l a n
    : Z.shiftr (-a) n = - Z.shiftr a n - (if Z_zerop (a mod 2 ^ n) then 0 else 1).
  Proof.
    unfold Z.shiftr; rewrite shiftl_opp_l at 1; rewrite Z.opp_involutive.
    reflexivity.
  Qed.
  Hint Rewrite shiftr_opp_l : push_Zshift.
  Hint Rewrite <- shiftr_opp_l : pull_Zshift.

  Lemma div_opp a : a <> 0 -> -a / a = -1.
  Proof.
    intros; autorewrite with pull_Zopp zsimplify; lia.
  Qed.

  Hint Rewrite Z.div_opp using zutil_arith : zsimplify.

  Lemma div_sub_1_0 x : x > 0 -> (x - 1) / x = 0.
  Proof. auto with zarith lia. Qed.

  Hint Rewrite div_sub_1_0 using zutil_arith : zsimplify.

  Lemma sub_pos_bound_div a b X : 0 <= a < X -> 0 <= b < X -> -1 <= (a - b) / X <= 0.
  Proof.
    intros H0 H1; pose proof (Z.sub_pos_bound a b X H0 H1).
    assert (Hn : -X <= a - b) by lia.
    assert (Hp : a - b <= X - 1) by lia.
    split; etransitivity; [ | apply Z_div_le, Hn; lia | apply Z_div_le, Hp; lia | ];
      instantiate; autorewrite with zsimplify; try reflexivity.
  Qed.

  Hint Resolve (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1))
       (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) : zarith.

  Lemma sub_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (a - b) / X = if a <? b then -1 else 0.
  Proof.
    intros H0 H1; pose proof (Z.sub_pos_bound_div a b X H0 H1).
    destruct (a <? b) eqn:?; Z.ltb_to_lt.
    { cut ((a - b) / X <> 0); [ lia | ].
      autorewrite with zstrip_div; auto with zarith lia. }
    { autorewrite with zstrip_div; auto with zarith lia. }
  Qed.

  Lemma add_opp_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (-b + a) / X = if a <? b then -1 else 0.
  Proof.
    rewrite !(Z.add_comm (-_)), !Z.add_opp_r.
    apply Z.sub_pos_bound_div_eq.
  Qed.

  Hint Rewrite Z.sub_pos_bound_div_eq Z.add_opp_pos_bound_div_eq using zutil_arith : zstrip_div.

  Lemma div_small_sym a b : 0 <= a < b -> 0 = a / b.
  Proof. intros; symmetry; apply Z.div_small; assumption. Qed.

  Lemma mod_small_sym a b : 0 <= a < b -> a = a mod b.
  Proof. intros; symmetry; apply Z.mod_small; assumption. Qed.

  Hint Resolve div_small_sym mod_small_sym : zarith.

  Lemma mod_eq_le_to_eq a b : 0 < a <= b -> a mod b = 0 -> a = b.
  Proof.
    intros H H'.
    assert (a = b * (a / b)) by auto with zarith lia.
    assert (a / b = 1) by nia.
    nia.
  Qed.
  Hint Resolve mod_eq_le_to_eq : zarith.

  Lemma div_same' a b : b <> 0 -> a = b -> a / b = 1.
  Proof.
    intros; subst; auto with zarith.
  Qed.
  Hint Resolve div_same' : zarith.

  Lemma mod_eq_le_div_1 a b : 0 < a <= b -> a mod b = 0 -> a / b = 1.
  Proof. auto with zarith. Qed.
  Hint Resolve mod_eq_le_div_1 : zarith.
  Hint Rewrite mod_eq_le_div_1 using zutil_arith : zsimplify.

  Lemma mod_neq_0_le_to_neq a b : a mod b <> 0 -> a <> b.
  Proof. repeat intro; subst; autorewrite with zsimplify in *; lia. Qed.
  Hint Resolve mod_neq_0_le_to_neq : zarith.

  Lemma div_small_neg x y : 0 < -x <= y -> x / y = -1.
  Proof.
    intro H; rewrite <- (Z.opp_involutive x).
    rewrite Z.div_opp_l_complete by lia.
    generalize dependent (-x); clear x; intros x H.
    pose proof (mod_neq_0_le_to_neq x y).
    autorewrite with zsimplify; edestruct Z_zerop; autorewrite with zsimplify in *; lia.
  Qed.
  Hint Rewrite div_small_neg using zutil_arith : zsimplify.

  Lemma div_sub_small x y z : 0 <= x < z -> 0 <= y <= z -> (x - y) / z = if x <? y then -1 else 0.
  Proof.
    pose proof (Zlt_cases x y).
    (destruct (x <? y) eqn:?);
      intros; autorewrite with zsimplify; try lia.
  Qed.
  Hint Rewrite div_sub_small using zutil_arith : zsimplify.

  Lemma le_lt_trans n m p : n <= m -> m < p -> n < p.
  Proof. lia. Qed.

  Lemma mul_div_lt_by_le x y z b : 0 <= y < z -> 0 <= x < b -> x * y / z < b.
  Proof.
    intros [? ?] [? ?]; eapply Z.le_lt_trans; [ | eassumption ].
    auto with zarith.
  Qed.
  Hint Resolve mul_div_lt_by_le : zarith.

  Definition pow_sub_r'
    := fun a b c y H0 H1 => @Logic.eq_trans _ _ _ y (@Z.pow_sub_r a b c H0 H1).
  Definition pow_sub_r'_sym
    := fun a b c y p H0 H1 => Logic.eq_sym (@Logic.eq_trans _ y _ _ (Logic.eq_sym p) (@Z.pow_sub_r a b c H0 H1)).
  Hint Resolve pow_sub_r' pow_sub_r'_sym Z.eq_le_incl : zarith.
  Hint Resolve (fun b => f_equal (fun e => b ^ e)) (fun e => f_equal (fun b => b ^ e)) : zarith.
  Definition mul_div_le'
    := fun x y z w p H0 H1 H2 H3 => @Z.le_trans _ _ w (@Z.mul_div_le x y z H0 H1 H2 H3) p.
  Hint Resolve mul_div_le' : zarith.
  Lemma mul_div_le'' x y z w : y <= w -> 0 <= x -> 0 <= y -> 0 < z -> x <= z -> x * y / z <= w.
  Proof.
    rewrite (Z.mul_comm x y); intros; apply mul_div_le'; assumption.
  Qed.
  Hint Resolve mul_div_le'' : zarith.

  Lemma two_p_two_eq_four : 2^(2) = 4.
  Proof. reflexivity. Qed.
  Hint Rewrite <- two_p_two_eq_four : push_Zpow.

  Lemma base_pow_neg b n : n < 0 -> b^n = 0.
  Proof.
    destruct n; intro H; try reflexivity; compute in H; congruence.
  Qed.
  Hint Rewrite base_pow_neg using zutil_arith : zsimplify.

  Lemma div_mod' a b : b <> 0 -> a = (a / b) * b + a mod b.
  Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
  Hint Rewrite <- div_mod' using zutil_arith : zsimplify.

  Lemma div_mod'' a b : b <> 0 -> a = a mod b + b * (a / b).
  Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
  Hint Rewrite <- div_mod'' using zutil_arith : zsimplify.

  Lemma div_mod''' a b : b <> 0 -> a = a mod b + (a / b) * b.
  Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
  Hint Rewrite <- div_mod''' using zutil_arith : zsimplify.

  Lemma div_sub_mod_exact a b : b <> 0 -> a / b = (a - a mod b) / b.
  Proof.
    intro.
    rewrite (Z.div_mod a b) at 2 by lia.
    autorewrite with zsimplify.
    reflexivity.
  Qed.

  Definition opp_distr_if (b : bool) x y : -(if b then x else y) = if b then -x else -y.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite opp_distr_if : push_Zopp.
  Hint Rewrite <- opp_distr_if : pull_Zopp.

  Lemma mul_r_distr_if (b : bool) x y z : z * (if b then x else y) = if b then z * x else z * y.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite mul_r_distr_if : push_Zmul.
  Hint Rewrite <- mul_r_distr_if : pull_Zmul.

  Lemma mul_l_distr_if (b : bool) x y z : (if b then x else y) * z = if b then x * z else y * z.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite mul_l_distr_if : push_Zmul.
  Hint Rewrite <- mul_l_distr_if : pull_Zmul.

  Lemma add_r_distr_if (b : bool) x y z : z + (if b then x else y) = if b then z + x else z + y.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite add_r_distr_if : push_Zadd.
  Hint Rewrite <- add_r_distr_if : pull_Zadd.

  Lemma add_l_distr_if (b : bool) x y z : (if b then x else y) + z = if b then x + z else y + z.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite add_l_distr_if : push_Zadd.
  Hint Rewrite <- add_l_distr_if : pull_Zadd.

  Lemma sub_r_distr_if (b : bool) x y z : z - (if b then x else y) = if b then z - x else z - y.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite sub_r_distr_if : push_Zsub.
  Hint Rewrite <- sub_r_distr_if : pull_Zsub.

  Lemma sub_l_distr_if (b : bool) x y z : (if b then x else y) - z = if b then x - z else y - z.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite sub_l_distr_if : push_Zsub.
  Hint Rewrite <- sub_l_distr_if : pull_Zsub.

  Lemma div_r_distr_if (b : bool) x y z : z / (if b then x else y) = if b then z / x else z / y.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite div_r_distr_if : push_Zdiv.
  Hint Rewrite <- div_r_distr_if : pull_Zdiv.

  Lemma div_l_distr_if (b : bool) x y z : (if b then x else y) / z = if b then x / z else y / z.
  Proof. destruct b; reflexivity. Qed.
  Hint Rewrite div_l_distr_if : push_Zdiv.
  Hint Rewrite <- div_l_distr_if : pull_Zdiv.

  Lemma div_add_exact x y d : d <> 0 -> x mod d = 0 -> (x + y) / d = x / d + y / d.
  Proof.
    intros; rewrite (Z_div_exact_full_2 x d) at 1 by assumption.
    rewrite Z.div_add_l' by assumption; lia.
  Qed.
  Hint Rewrite div_add_exact using zutil_arith : zsimplify.

  Lemma sub_mod_mod_0 x d : (x - x mod d) mod d = 0.
  Proof.
    destruct (Z_zerop d); subst; autorewrite with push_Zmod zsimplify; reflexivity.
  Qed.
  Hint Resolve sub_mod_mod_0 : zarith.
  Hint Rewrite sub_mod_mod_0 : zsimplify.

  Lemma div_sub_mod_cond x y d
    : d <> 0
      -> (x - y) / d
         = x / d + ((x mod d - y) / d).
  Proof. clear.
         intro.
         replace (x - y) with ((x - x mod d) + (x mod d - y)) by lia.
         rewrite div_add_exact by auto with zarith.
         rewrite <- Z.div_sub_mod_exact by lia; lia.
  Qed.
  Hint Resolve div_sub_mod_cond : zarith.

  Lemma div_between n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a / b = n.
  Proof. intros; Z.div_mod_to_quot_rem; nia. Qed.
  Hint Rewrite div_between using zutil_arith : zsimplify.

  Lemma mod_small_n n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a mod b = a - n * b.
  Proof. intros; erewrite Zmod_eq_full, div_between by eassumption. reflexivity. Qed.
  Hint Rewrite mod_small_n using zutil_arith : zsimplify.

  Lemma div_between_1 a b : b <> 0 -> b <= a < 2 * b -> a / b = 1.
  Proof. intros; rewrite (div_between 1) by lia; reflexivity. Qed.
  Hint Rewrite div_between_1 using zutil_arith : zsimplify.

  Lemma mod_small_1 a b : b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
  Proof. intros; rewrite (mod_small_n 1) by lia; lia. Qed.
  Hint Rewrite mod_small_1 using zutil_arith : zsimplify.

  Lemma div_between_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> (a / b = if (1 + n) * b <=? a then 1 + n else n)%Z.
  Proof.
    intros.
    break_match; Z.ltb_to_lt;
      apply div_between; lia.
  Qed.

  Lemma mod_small_n_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> a mod b = a - (if (1 + n) * b <=? a then (1 + n) else n) * b.
  Proof. intros; erewrite Zmod_eq_full, div_between_if by eassumption; autorewrite with zsimplify_const. reflexivity. Qed.

  Lemma div_between_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a / b = if b <=? a then 1 else 0.
  Proof. intros; rewrite (div_between_if 0) by lia; autorewrite with zsimplify_const; reflexivity. Qed.

  Lemma mod_small_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a mod b = a - if b <=? a then b else 0.
  Proof. intros; rewrite (mod_small_n_if 0) by lia; autorewrite with zsimplify_const. break_match; lia. Qed.

  Lemma mul_mod_distr_r_full a b c : (a * c) mod (b * c) = (a mod b * c).
  Proof.
    destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
      autorewrite with zsimplify; auto using Z.mul_mod_distr_r.
  Qed.

  Lemma mul_mod_distr_l_full a b c : (c * a) mod (c * b) = c * (a mod b).
  Proof.
    destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
      autorewrite with zsimplify; auto using Z.mul_mod_distr_l.
  Qed.

  Lemma lt_mul_2_mod_sub : forall a b, b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
  Proof.
    intros.
    replace (a mod b) with ((1 * b + (a - b)) mod b) by (f_equal; ring).
    rewrite Z.mod_add_l by auto.
    apply Z.mod_small.
    omega.
  Qed.


  Lemma leb_add_same x y : (x <=? y + x) = (0 <=? y).
  Proof. destruct (x <=? y + x) eqn:?, (0 <=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
  Hint Rewrite leb_add_same : zsimplify.

  Lemma ltb_add_same x y : (x <? y + x) = (0 <? y).
  Proof. destruct (x <? y + x) eqn:?, (0 <? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
  Hint Rewrite ltb_add_same : zsimplify.

  Lemma geb_add_same x y : (x >=? y + x) = (0 >=? y).
  Proof. destruct (x >=? y + x) eqn:?, (0 >=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
  Hint Rewrite geb_add_same : zsimplify.

  Lemma gtb_add_same x y : (x >? y + x) = (0 >? y).
  Proof. destruct (x >? y + x) eqn:?, (0 >? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
  Hint Rewrite gtb_add_same : zsimplify.

  Lemma shiftl_add x y z : 0 <= z -> (x + y) << z = (x << z) + (y << z).
  Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
  Hint Rewrite shiftl_add using zutil_arith : push_Zshift.
  Hint Rewrite <- shiftl_add using zutil_arith : pull_Zshift.

  Lemma shiftr_add x y z : z <= 0 -> (x + y) >> z = (x >> z) + (y >> z).
  Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
  Hint Rewrite shiftr_add using zutil_arith : push_Zshift.
  Hint Rewrite <- shiftr_add using zutil_arith : pull_Zshift.

  Lemma shiftl_sub x y z : 0 <= z -> (x - y) << z = (x << z) - (y << z).
  Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
  Hint Rewrite shiftl_sub using zutil_arith : push_Zshift.
  Hint Rewrite <- shiftl_sub using zutil_arith : pull_Zshift.

  Lemma shiftr_sub x y z : z <= 0 -> (x - y) >> z = (x >> z) - (y >> z).
  Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
  Hint Rewrite shiftr_sub using zutil_arith : push_Zshift.
  Hint Rewrite <- shiftr_sub using zutil_arith : pull_Zshift.

  Lemma shl_shr_lt x y n m (Hx : 0 <= x < 2^n) (Hy : 0 <= y < 2^n) (Hm : 0 <= m <= n)
    : 0 <= (x >> (n - m)) + ((y << m) mod 2^n) < 2^n.
  Proof.
    cut (0 <= (x >> (n - m)) + ((y << m) mod 2^n) <= 2^n - 1); [ omega | ].
    assert (0 <= x <= 2^n - 1) by omega.
    assert (0 <= y <= 2^n - 1) by omega.
    assert (0 < 2 ^ (n - m)) by auto with zarith.
    assert (0 <= y mod 2 ^ (n - m) < 2^(n-m)) by auto with zarith.
    assert (0 <= y mod 2 ^ (n - m) <= 2 ^ (n - m) - 1) by omega.
    assert (0 <= (y mod 2 ^ (n - m)) * 2^m <= (2^(n-m) - 1)*2^m) by auto with zarith.
    assert (0 <= x / 2^(n-m) < 2^n / 2^(n-m)).
    { split; Z.zero_bounds.
      apply Z.div_lt_upper_bound; autorewrite with pull_Zpow zsimplify; nia. }
    autorewrite with Zshift_to_pow.
    split; Z.zero_bounds.
    replace (2^n) with (2^(n-m) * 2^m) by (autorewrite with pull_Zpow; f_equal; omega).
    rewrite Zmult_mod_distr_r.
    autorewrite with pull_Zpow zsimplify push_Zmul in * |- .
    nia.
  Qed.

  Lemma add_shift_mod x y n m
        (Hx : 0 <= x < 2^n) (Hy : 0 <= y)
        (Hn : 0 <= n) (Hm : 0 < m)
    : (x + y << n) mod (m * 2^n) = x + (y mod m) << n.
  Proof.
    pose proof (Z.mod_bound_pos y m).
    specialize_by omega.
    assert (0 < 2^n) by auto with zarith.
    autorewrite with Zshift_to_pow.
    rewrite Zplus_mod, !Zmult_mod_distr_r.
    rewrite Zplus_mod, !Zmod_mod, <- Zplus_mod.
    rewrite !(Zmod_eq (_ + _)) by nia.
    etransitivity; [ | apply Z.add_0_r ].
    rewrite <- !Z.add_opp_r, <- !Z.add_assoc.
    repeat apply f_equal.
    ring_simplify.
    cut (((x + y mod m * 2 ^ n) / (m * 2 ^ n)) = 0); [ nia | ].
    apply Z.div_small; split; nia.
  Qed.

  Lemma add_mul_mod x y n m
        (Hx : 0 <= x < 2^n) (Hy : 0 <= y)
        (Hn : 0 <= n) (Hm : 0 < m)
    : (x + y * 2^n) mod (m * 2^n) = x + (y mod m) * 2^n.
  Proof.
    generalize (add_shift_mod x y n m).
    autorewrite with Zshift_to_pow; auto.
  Qed.

  Lemma lt_pow_2_shiftr : forall a n, 0 <= a < 2 ^ n -> a >> n = 0.
  Proof.
    intros.
    destruct (Z_le_dec 0 n).
    + rewrite Z.shiftr_div_pow2 by assumption.
      auto using Z.div_small.
    + assert (2 ^ n = 0) by (apply Z.pow_neg_r; omega).
      omega.
  Qed.

  Hint Rewrite Z.pow2_bits_eqb using zutil_arith : Ztestbit.
  Lemma pow_2_shiftr : forall n, 0 <= n -> (2 ^ n) >> n = 1.
  Proof.
    intros; apply Z.bits_inj'; intros.
    replace 1 with (2 ^ 0) by ring.
    repeat match goal with
           | |- _ => progress intros
           | |- _ => progress rewrite ?Z.eqb_eq, ?Z.eqb_neq in *
           | |- _ => progress autorewrite with Ztestbit
           | |- context[Z.eqb ?a ?b] => case_eq (Z.eqb a b)
           | |- _ => reflexivity || omega
           end.
  Qed.

  Lemma lt_mul_2_pow_2_shiftr : forall a n, 0 <= a < 2 * 2 ^ n ->
                                            a >> n = if Z_lt_dec a (2 ^ n) then 0 else 1.
  Proof.
    intros; break_match; [ apply lt_pow_2_shiftr; omega | ].
    destruct (Z_le_dec 0 n).
    + replace (2 * 2 ^ n) with (2 ^ (n + 1)) in *
        by (rewrite Z.pow_add_r; try omega; ring).
      pose proof (Z.shiftr_ones a (n + 1) n H).
      pose proof (Z.shiftr_le (2 ^ n) a n).
      specialize_by omega.
      replace (n + 1 - n) with 1 in * by ring.
      replace (Z.ones 1) with 1 in * by reflexivity.
      rewrite pow_2_shiftr in * by omega.
      omega.
    + assert (2 ^ n = 0) by (apply Z.pow_neg_r; omega).
      omega.
  Qed.

  Lemma shiftr_nonneg_le : forall a n, 0 <= a -> 0 <= n -> a >> n <= a.
  Proof.
    intros.
    repeat match goal with
           | [ H : _ <= _ |- _ ]
             => rewrite Z.lt_eq_cases in H
           | [ H : _ \/ _ |- _ ] => destruct H
           | _ => progress subst
           | _ => progress autorewrite with zsimplify Zshift_to_pow
           | _ => solve [ auto with zarith omega ]
           end.
  Qed.
  Hint Resolve shiftr_nonneg_le : zarith.

  Lemma log2_pred_pow2_full a : Z.log2 (Z.pred (2^a)) = Z.max 0 (Z.pred a).
  Proof.
    destruct (Z_dec 0 a) as [ [?|?] | ?].
    { rewrite Z.log2_pred_pow2 by assumption.
      apply Z.max_case_strong; omega. }
    { autorewrite with zsimplify; simpl.
      apply Z.max_case_strong; omega. }
    { subst; compute; reflexivity. }
  Qed.
  Hint Rewrite log2_pred_pow2_full : zsimplify.

  Lemma log2_up_le_full a : a <= 2^Z.log2_up a.
  Proof.
    destruct (Z_dec 1 a) as [ [ ? | ? ] | ? ];
      first [ apply Z.log2_up_spec; assumption
            | rewrite Z.log2_up_eqn0 by omega; simpl; omega ].
  Qed.

  Lemma log2_up_le_pow2_full : forall a b : Z, (0 <= b)%Z -> (a <= 2 ^ b)%Z <-> (Z.log2_up a <= b)%Z.
  Proof.
    intros a b H.
    destruct (Z_lt_le_dec 0 a); [ apply Z.log2_up_le_pow2; assumption | ].
    split; transitivity 0%Z; try omega; auto with zarith.
    rewrite Z.log2_up_eqn0 by omega.
    reflexivity.
  Qed.

  Lemma ones_lt_pow2 x y : 0 <= x <= y -> Z.ones x < 2^y.
  Proof.
    rewrite Z.ones_equiv, Z.lt_pred_le.
    auto with zarith.
  Qed.
  Hint Resolve ones_lt_pow2 : zarith.

  Lemma log2_ones_full x : Z.log2 (Z.ones x) = Z.max 0 (Z.pred x).
  Proof.
    rewrite Z.ones_equiv, log2_pred_pow2_full; reflexivity.
  Qed.
  Hint Rewrite log2_ones_full : zsimplify.

  Lemma log2_ones_lt x y : 0 < x <= y -> Z.log2 (Z.ones x) < y.
  Proof.
    rewrite log2_ones_full; apply Z.max_case_strong; omega.
  Qed.
  Hint Resolve log2_ones_lt : zarith.

  Lemma log2_ones_le x y : 0 <= x <= y -> Z.log2 (Z.ones x) <= y.
  Proof.
    rewrite log2_ones_full; apply Z.max_case_strong; omega.
  Qed.
  Hint Resolve log2_ones_le : zarith.

  Lemma log2_ones_lt_nonneg x y : 0 < y -> x <= y -> Z.log2 (Z.ones x) < y.
  Proof.
    rewrite log2_ones_full; apply Z.max_case_strong; omega.
  Qed.
  Hint Resolve log2_ones_lt_nonneg : zarith.

  Lemma log2_lt_pow2_alt a b : 0 < b -> (a < 2^b <-> Z.log2 a < b).
  Proof.
    destruct (Z_lt_le_dec 0 a); auto using Z.log2_lt_pow2; [].
    rewrite Z.log2_nonpos by omega.
    split; auto with zarith; [].
    intro; eapply le_lt_trans; [ eassumption | ].
    auto with zarith.
  Qed.

  Section ZInequalities.
    Lemma land_le : forall x y, (0 <= x)%Z -> (Z.land x y <= x)%Z.
    Proof.
      intros; apply Z.ldiff_le; [assumption|].
      rewrite Z.ldiff_land, Z.land_comm, Z.land_assoc.
      rewrite <- Z.land_0_l with (a := y); f_equal.
      rewrite Z.land_comm, Z.land_lnot_diag.
      reflexivity.
    Qed.

    Lemma lor_lower : forall x y, (0 <= x)%Z -> (0 <= y)%Z -> (x <= Z.lor x y)%Z.
    Proof.
      intros; apply Z.ldiff_le; [apply Z.lor_nonneg; auto|].
      rewrite Z.ldiff_land.
      apply Z.bits_inj_iff'; intros k Hpos; apply Z.le_ge in Hpos.
      rewrite Z.testbit_0_l, Z.land_spec, Z.lnot_spec, Z.lor_spec;
        [|apply Z.ge_le; assumption].
      induction (Z.testbit x k), (Z.testbit y k); cbv; reflexivity.
    Qed.

    Lemma lor_le : forall x y z,
        (0 <= x)%Z
        -> (x <= y)%Z
        -> (y <= z)%Z
        -> (Z.lor x y <= (2 ^ Z.log2_up (z+1)) - 1)%Z.
    Proof.
      intros; apply Z.ldiff_le.

      - apply Z.le_add_le_sub_r.
        replace 1%Z with (2 ^ 0)%Z by (cbv; reflexivity).
        rewrite Z.add_0_l.
        apply Z.pow_le_mono_r; [cbv; reflexivity|].
        apply Z.log2_up_nonneg.

      - destruct (Z_lt_dec 0 z).

        + assert (forall a, a - 1 = Z.pred a)%Z as HP by (intro; omega);
            rewrite HP, <- Z.ones_equiv; clear HP.
          apply Z.ldiff_ones_r_low; [apply Z.lor_nonneg; split; omega|].
          rewrite Z.log2_up_eqn, Z.log2_lor; try omega.
          apply Z.lt_succ_r.
          apply Z.max_case_strong; intros; apply Z.log2_le_mono; omega.

        + replace z with 0%Z by omega.
          replace y with 0%Z by omega.
          replace x with 0%Z by omega.
          cbv; reflexivity.
    Qed.

    Lemma pow2_ge_0: forall a, (0 <= 2 ^ a)%Z.
    Proof.
      intros; apply Z.pow_nonneg; omega.
    Qed.

    Lemma pow2_gt_0: forall a, (0 <= a)%Z -> (0 < 2 ^ a)%Z.
    Proof.
      intros; apply Z.pow_pos_nonneg; [|assumption]; omega.
    Qed.

    Local Ltac solve_pow2 :=
      repeat match goal with
             | [|- _ /\ _] => split
             | [|- (0 < 2 ^ _)%Z] => apply pow2_gt_0
             | [|- (0 <= 2 ^ _)%Z] => apply pow2_ge_0
             | [|- (2 ^ _ <= 2 ^ _)%Z] => apply Z.pow_le_mono_r
             | [|- (_ <= _)%Z] => omega
             | [|- (_ < _)%Z] => omega
             end.

    Lemma pow2_mod_range : forall a n m,
        (0 <= n) ->
        (n <= m) ->
        (0 <= Z.pow2_mod a n < 2 ^ m).
    Proof.
      intros; unfold Z.pow2_mod.
      rewrite Z.land_ones; [|assumption].
      split; [apply Z.mod_pos_bound, pow2_gt_0; assumption|].
      eapply Z.lt_le_trans; [apply Z.mod_pos_bound, pow2_gt_0; assumption|].
      apply Z.pow_le_mono; [|assumption].
      split; simpl; omega.
    Qed.

    Lemma shiftr_range : forall a n m,
        (0 <= n)%Z ->
        (0 <= m)%Z ->
        (0 <= a < 2 ^ (n + m))%Z ->
        (0 <= Z.shiftr a n < 2 ^ m)%Z.
    Proof.
      intros a n m H0 H1 H2; destruct H2.
      split; [apply Z.shiftr_nonneg; assumption|].
      rewrite Z.shiftr_div_pow2; [|assumption].
      apply Z.div_lt_upper_bound; [apply pow2_gt_0; assumption|].
      eapply Z.lt_le_trans; [eassumption|apply Z.eq_le_incl].
      apply Z.pow_add_r; omega.
    Qed.


    Lemma shiftr_le_mono: forall a b c d,
        (0 <= a)%Z
        -> (0 <= d)%Z
        -> (a <= c)%Z
        -> (d <= b)%Z
        -> (Z.shiftr a b <= Z.shiftr c d)%Z.
    Proof.
      intros.
      repeat rewrite Z.shiftr_div_pow2; [|omega|omega].
      etransitivity; [apply Z.div_le_compat_l | apply Z.div_le_mono]; solve_pow2.
    Qed.

    Lemma shiftl_le_mono: forall a b c d,
        (0 <= a)%Z
        -> (0 <= b)%Z
        -> (a <= c)%Z
        -> (b <= d)%Z
        -> (Z.shiftl a b <= Z.shiftl c d)%Z.
    Proof.
      intros.
      repeat rewrite Z.shiftl_mul_pow2; [|omega|omega].
      etransitivity; [apply Z.mul_le_mono_nonneg_l|apply Z.mul_le_mono_nonneg_r]; solve_pow2.
    Qed.
  End ZInequalities.

  Lemma max_log2_up x y : Z.max (Z.log2_up x) (Z.log2_up y) = Z.log2_up (Z.max x y).
  Proof. apply Z.max_monotone; intros ??; apply Z.log2_up_le_mono. Qed.
  Hint Rewrite max_log2_up : push_Zmax.
  Hint Rewrite <- max_log2_up : pull_Zmax.

  Lemma lor_bounds x y : 0 <= x -> 0 <= y
                         -> Z.max x y <= Z.lor x y <= 2^Z.log2_up (Z.max x y + 1) - 1.
  Proof.
    apply Z.max_case_strong; intros; split;
      try solve [ eauto using lor_lower, Z.le_trans, lor_le with omega
                | rewrite Z.lor_comm; eauto using lor_lower, Z.le_trans, lor_le with omega ].
  Qed.
  Lemma lor_bounds_lower x y : 0 <= x -> 0 <= y
                               -> Z.max x y <= Z.lor x y.
  Proof. intros; apply lor_bounds; assumption. Qed.
  Lemma lor_bounds_upper x y : Z.lor x y <= 2^Z.log2_up (Z.max x y + 1) - 1.
  Proof.
    pose proof (proj2 (Z.lor_neg x y)).
    destruct (Z_lt_le_dec x 0), (Z_lt_le_dec y 0);
      try solve [ intros; apply lor_bounds; assumption ];
      transitivity (2^0-1);
      try apply Z.sub_le_mono_r, Z.pow_le_mono_r, Z.log2_up_nonneg;
      simpl; omega.
  Qed.
  Lemma lor_bounds_gen_lower x y l : 0 <= x -> 0 <= y -> l <= Z.max x y
                                     -> l <= Z.lor x y.
  Proof.
    intros; etransitivity;
      solve [ apply lor_bounds; auto
            | eauto ].
  Qed.
  Lemma lor_bounds_gen_upper x y u : x <= u -> y <= u
                                     -> Z.lor x y <= 2^Z.log2_up (u + 1) - 1.
  Proof.
    intros; etransitivity; [ apply lor_bounds_upper | ].
    apply Z.sub_le_mono_r, Z.pow_le_mono_r, Z.log2_up_le_mono, Z.max_case_strong;
      omega.
  Qed.
  Lemma lor_bounds_gen x y l u : 0 <= x -> 0 <= y -> l <= Z.max x y -> x <= u -> y <= u
                                 -> l <= Z.lor x y <= 2^Z.log2_up (u + 1) - 1.
  Proof. auto using lor_bounds_gen_lower, lor_bounds_gen_upper. Qed.

  Lemma log2_up_le_full_max a : Z.max a 1 <= 2^Z.log2_up a.
  Proof.
    apply Z.max_case_strong; auto using Z.log2_up_le_full.
    intros; rewrite Z.log2_up_eqn0 by assumption; reflexivity.
  Qed.
  Lemma log2_up_le_1 a : Z.log2_up a <= 1 <-> a <= 2.
  Proof.
    pose proof (Z.log2_nonneg (Z.pred a)).
    destruct (Z_dec a 2) as [ [ ? | ? ] | ? ].
    { rewrite (proj2 (Z.log2_up_null a)) by omega; split; omega. }
    { rewrite Z.log2_up_eqn by omega.
      split; try omega; intro.
      assert (Z.log2 (Z.pred a) = 0) by omega.
      assert (Z.pred a <= 1) by (apply Z.log2_null; omega).
      omega. }
    { subst; cbv -[Z.le]; split; omega. }
  Qed.
  Lemma log2_up_1_le a : 1 <= Z.log2_up a <-> 2 <= a.
  Proof.
    pose proof (Z.log2_nonneg (Z.pred a)).
    destruct (Z_dec a 2) as [ [ ? | ? ] | ? ].
    { rewrite (proj2 (Z.log2_up_null a)) by omega; split; omega. }
    { rewrite Z.log2_up_eqn by omega; omega. }
    { subst; cbv -[Z.le]; split; omega. }
  Qed.

  Lemma shiftl_le_Proper2 y
    : Proper (Z.le ==> Z.le) (fun x => Z.shiftl x y).
  Proof.
    unfold Basics.flip in *.
    pose proof (Zle_cases 0 y) as Hx.
    intros x x' H.
    pose proof (Zle_cases 0 x) as Hy.
    pose proof (Zle_cases 0 x') as Hy'.
    destruct (0 <=? y), (0 <=? x), (0 <=? x');
      autorewrite with Zshift_to_pow;
      Z.replace_all_neg_with_pos;
      autorewrite with pull_Zopp;
      rewrite ?Z.div_opp_l_complete;
      repeat destruct (Z_zerop _);
      autorewrite with zsimplify_const pull_Zopp;
      auto with zarith;
      repeat match goal with
             | [ |- context[-?x - ?y] ]
               => replace (-x - y) with (-(x + y)) by omega
             | _ => rewrite <- Z.opp_le_mono
             | _ => rewrite <- Z.add_le_mono_r
             | _ => solve [ auto with zarith ]
             | [ |- ?x <= ?y + 1 ]
               => cut (x <= y); [ omega | solve [ auto with zarith ] ]
             | [ |- -_ <= _ ]
               => solve [ transitivity (-0); auto with zarith ]
             end.
    { repeat match goal with H : context[_ mod _] |- _ => revert H end;
        Z.div_mod_to_quot_rem; nia. }
  Qed.

  Lemma shiftl_le_Proper1 x
        (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
    : Proper (R (0 <=? x) ==> Z.le) (Z.shiftl x).
  Proof.
    unfold Basics.flip in *.
    pose proof (Zle_cases 0 x) as Hx.
    intros y y' H.
    pose proof (Zle_cases 0 y) as Hy.
    pose proof (Zle_cases 0 y') as Hy'.
    destruct (0 <=? x), (0 <=? y), (0 <=? y'); subst R; cbv beta iota in *;
      autorewrite with Zshift_to_pow;
      Z.replace_all_neg_with_pos;
      autorewrite with pull_Zopp;
      rewrite ?Z.div_opp_l_complete;
      repeat destruct (Z_zerop _);
      autorewrite with zsimplify_const pull_Zopp;
      auto with zarith;
      repeat match goal with
             | [ |- context[-?x - ?y] ]
               => replace (-x - y) with (-(x + y)) by omega
             | _ => rewrite <- Z.opp_le_mono
             | _ => rewrite <- Z.add_le_mono_r
             | _ => solve [ auto with zarith ]
             | [ |- ?x <= ?y + 1 ]
               => cut (x <= y); [ omega | solve [ auto with zarith ] ]
             | [ |- context[2^?x] ]
               => lazymatch goal with
                  | [ H : 1 < 2^x |- _ ] => fail
                  | [ H : 0 < 2^x |- _ ] => fail
                  | [ H : 0 <= 2^x |- _ ] => fail
                  | _ => first [ assert (1 < 2^x) by auto with zarith
                               | assert (0 < 2^x) by auto with zarith
                               | assert (0 <= 2^x) by auto with zarith ]
                  end
             | [ H : ?x <= ?y |- _ ]
               => is_var x; is_var y;
                    lazymatch goal with
                    | [ H : 2^x <= 2^y |- _ ] => fail
                    | [ H : 2^x < 2^y |- _ ] => fail
                    | _ => assert (2^x <= 2^y) by auto with zarith
                    end
             | [ H : ?x <= ?y, H' : ?f ?x = ?k, H'' : ?f ?y <> ?k |- _ ]
               => let Hn := fresh in
                  assert (Hn : x <> y) by congruence;
                    assert (x < y) by omega; clear H Hn
             | [ H : ?x <= ?y, H' : ?f ?x <> ?k, H'' : ?f ?y = ?k |- _ ]
               => let Hn := fresh in
                  assert (Hn : x <> y) by congruence;
                    assert (x < y) by omega; clear H Hn
             | _ => solve [ repeat match goal with H : context[_ mod _] |- _ => revert H end;
                            Z.div_mod_to_quot_rem; subst;
                            lazymatch goal with
                            | [ |- _ <= (?a * ?q + ?r) * ?q' ]
                              => transitivity (q * (a * q') + r * q');
                                 [ assert (0 < a * q') by nia; nia
                                 | nia ]
                            end ]
             end.
    { replace y' with (y + (y' - y)) by omega.
      rewrite Z.pow_add_r, <- Zdiv_Zdiv by auto with zarith.
      assert (y < y') by (assert (y <> y') by congruence; omega).
      assert (1 < 2^(y'-y)) by auto with zarith.
      assert (0 < x / 2^y)
        by (repeat match goal with H : context[_ mod _] |- _ => revert H end;
            Z.div_mod_to_quot_rem; nia).
      assert (2^y <= x)
        by (repeat match goal with H : context[_ / _] |- _ => revert H end;
            Z.div_mod_to_quot_rem; nia).
      match goal with
      | [ |- ?x + 1 <= ?y ] => cut (x < y); [ omega | ]
      end.
      auto with zarith. }
  Qed.

  Lemma shiftr_le_Proper2 y
    : Proper (Z.le ==> Z.le) (fun x => Z.shiftr x y).
  Proof. apply shiftl_le_Proper2. Qed.

  Lemma shiftr_le_Proper1 x
        (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
    : Proper (R (x <? 0) ==> Z.le) (Z.shiftr x).
  Proof.
    subst R; intros y y' H'; unfold Z.shiftr; apply shiftl_le_Proper1.
    unfold Basics.flip in *.
    pose proof (Zle_cases 0 x).
    pose proof (Zlt_cases x 0).
    destruct (0 <=? x), (x <? 0); try omega.
  Qed.
End Z.

Module N2Z.
  Lemma inj_land n m : Z.of_N (N.land n m) = Z.land (Z.of_N n) (Z.of_N m).
  Proof. destruct n, m; reflexivity. Qed.
  Hint Rewrite inj_land : push_Zof_N.
  Hint Rewrite <- inj_land : pull_Zof_N.

  Lemma inj_lor n m : Z.of_N (N.lor n m) = Z.lor (Z.of_N n) (Z.of_N m).
  Proof. destruct n, m; reflexivity. Qed.
  Hint Rewrite inj_lor : push_Zof_N.
  Hint Rewrite <- inj_lor : pull_Zof_N.

  Lemma inj_shiftl: forall x y, Z.of_N (N.shiftl x y) = Z.shiftl (Z.of_N x) (Z.of_N y).
  Proof.
    intros.
    apply Z.bits_inj_iff'; intros k Hpos.
    rewrite Z2N.inj_testbit; [|assumption].
    rewrite Z.shiftl_spec; [|assumption].

    assert ((Z.to_N k) >= y \/ (Z.to_N k) < y)%N as g by (
        unfold N.ge, N.lt; induction (N.compare (Z.to_N k) y); [left|auto|left];
        intro H; inversion H).

    destruct g as [g|g];
    [ rewrite N.shiftl_spec_high; [|apply N2Z.inj_le; rewrite Z2N.id|apply N.ge_le]
    | rewrite N.shiftl_spec_low]; try assumption.

    - rewrite <- N2Z.inj_testbit; f_equal.
        rewrite N2Z.inj_sub, Z2N.id; [reflexivity|assumption|apply N.ge_le; assumption].

    - apply N2Z.inj_lt in g.
        rewrite Z2N.id in g; [symmetry|assumption].
        apply Z.testbit_neg_r; omega.
  Qed.
  Hint Rewrite inj_shiftl : push_Zof_N.
  Hint Rewrite <- inj_shiftl : pull_Zof_N.

  Lemma inj_shiftr: forall x y, Z.of_N (N.shiftr x y) = Z.shiftr (Z.of_N x) (Z.of_N y).
  Proof.
    intros.
    apply Z.bits_inj_iff'; intros k Hpos.
    rewrite Z2N.inj_testbit; [|assumption].
    rewrite Z.shiftr_spec, N.shiftr_spec; [|apply N2Z.inj_le; rewrite Z2N.id|]; try assumption.
    rewrite <- N2Z.inj_testbit; f_equal.
    rewrite N2Z.inj_add; f_equal.
    apply Z2N.id; assumption.
  Qed.
  Hint Rewrite inj_shiftr : push_Zof_N.
  Hint Rewrite <- inj_shiftr : pull_Zof_N.
End N2Z.

Module Export BoundsTactics.
  Ltac prime_bound := Z.prime_bound.
  Ltac zero_bounds := Z.zero_bounds.
End BoundsTactics.