aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZUtil.v
blob: 9bd134f10e70a8726b384c43be1a3826d0a78040 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
Require Import Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv.
Require Import Coq.omega.Omega Coq.micromega.Psatz Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.Notations.
Require Import Coq.Lists.List.
Import Nat.
Local Open Scope Z.

Infix ">>" := Z.shiftr : Z_scope.
Infix "<<" := Z.shiftl : Z_scope.
Infix "&" := Z.land : Z_scope.

Hint Extern 1 => lia : lia.
Hint Extern 1 => lra : lra.
Hint Extern 1 => nia : nia.
Hint Extern 1 => omega : omega.
Hint Resolve Z.log2_nonneg Z.div_small Z.mod_small Z.pow_neg_r Z.pow_0_l Z.pow_pos_nonneg Z.lt_le_incl : zarith.
Hint Resolve (fun a b H => proj1 (Z.mod_pos_bound a b H)) (fun a b H => proj2 (Z.mod_pos_bound a b H)) : zarith.

(** Only hints that are always safe to apply (i.e., reversible), and
    which can reasonably be said to "simplify" the goal, should go in
    this database. *)
Create HintDb zsimplify discriminated.
Hint Rewrite Z.div_1_r Z.mul_1_r Z.mul_1_l Z.sub_diag Z.mul_0_r Z.mul_0_l Z.add_0_l Z.add_0_r Z.opp_involutive Z.sub_0_r : zsimplify.
Hint Rewrite Z.div_mul Z.div_1_l Z.div_same Z.mod_same Z.div_small Z.mod_small Z.div_add Z.div_add_l Z.mod_add Z.div_0_l using lia : zsimplify.

(** "push" means transform [-f x] to [f (-x)]; "pull" means go the other way *)
Create HintDb push_Zopp discriminated.
Create HintDb pull_Zopp discriminated.
Hint Rewrite Z.div_opp_l_nz Z.div_opp_l_z using lia : pull_Zopp.
Hint Rewrite Z.mul_opp_l : pull_Zopp.
Hint Rewrite <- Z.opp_add_distr : pull_Zopp.
Hint Rewrite <- Z.div_opp_l_nz Z.div_opp_l_z using lia : push_Zopp.
Hint Rewrite <- Z.mul_opp_l : push_Zopp.
Hint Rewrite Z.opp_add_distr : push_Zopp.

Create HintDb push_Zmul discriminated.
Create HintDb pull_Zmul discriminated.
Hint Rewrite Z.mul_add_distr_l Z.mul_add_distr_r Z.mul_sub_distr_l Z.mul_sub_distr_r : push_Zmul.
Hint Rewrite <- Z.mul_add_distr_l Z.mul_add_distr_r Z.mul_sub_distr_l Z.mul_sub_distr_r : pull_Zmul.

(** For the occasional lemma that can remove the use of [Z.div] *)
Create HintDb zstrip_div.
Hint Rewrite Z.div_small_iff using lia : zstrip_div.

(** It's not clear that [mod] is much easier for [lia] than [Z.div],
    so we separate out the transformations between [mod] and [div].
    We'll put, e.g., [mul_div_eq] into it below. *)
Create HintDb zstrip_div.

Module Z.
  Definition pow2_mod n i := (n & (Z.ones i)).

  Lemma pow2_mod_spec : forall a b, (0 <= b) -> Z.pow2_mod a b = a mod (2 ^ b).
  Proof.
    intros.
    unfold Z.pow2_mod.
    rewrite Z.land_ones; auto.
  Qed.

  Lemma positive_is_nonzero : forall x, x > 0 -> x <> 0.
  Proof. intros; omega. Qed.

  Hint Resolve positive_is_nonzero : zarith.

  Lemma div_positive_gt_0 : forall a b, a > 0 -> b > 0 -> a mod b = 0 ->
    a / b > 0.
  Proof.
    intros; rewrite Z.gt_lt_iff.
    apply Z.div_str_pos.
    split; intuition.
    apply Z.divide_pos_le; try (apply Zmod_divide); omega.
  Qed.

  Lemma elim_mod : forall a b m, a = b -> a mod m = b mod m.
  Proof. intros; subst; auto. Qed.

  Hint Resolve elim_mod : zarith.

  Lemma mod_add_l : forall a b c, b <> 0 -> (a * b + c) mod b = c mod b.
  Proof. intros; rewrite (Z.add_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
  Hint Rewrite mod_add_l using lia : zsimplify.

  Lemma mod_add' : forall a b c, b <> 0 -> (a + b * c) mod b = a mod b.
  Proof. intros; rewrite (Z.mul_comm _ c); autorewrite with zsimplify; reflexivity. Qed.
  Lemma mod_add_l' : forall a b c, a <> 0 -> (a * b + c) mod a = c mod a.
  Proof. intros; rewrite (Z.mul_comm _ b); autorewrite with zsimplify; reflexivity. Qed.
  Hint Rewrite mod_add' mod_add_l' using lia : zsimplify.

  Lemma pos_pow_nat_pos : forall x n,
    Z.pos x ^ Z.of_nat n > 0.
  Proof.
    do 2 (intros; induction n; subst; simpl in *; auto with zarith).
    rewrite <- Pos.add_1_r, Zpower_pos_is_exp.
    apply Zmult_gt_0_compat; auto; reflexivity.
  Qed.

  Lemma div_mul' : forall a b : Z, b <> 0 -> (b * a) / b = a.
  Proof. intros. rewrite Z.mul_comm. apply Z.div_mul; auto. Qed.
  Hint Rewrite div_mul' using lia : zsimplify.

  (** TODO: Should we get rid of this duplicate? *)
  Notation gt0_neq0 := positive_is_nonzero (only parsing).

  Lemma pow_Z2N_Zpow : forall a n, 0 <= a ->
    ((Z.to_nat a) ^ n = Z.to_nat (a ^ Z.of_nat n)%Z)%nat.
  Proof.
    intros; induction n; try reflexivity.
    rewrite Nat2Z.inj_succ.
    rewrite pow_succ_r by apply le_0_n.
    rewrite Z.pow_succ_r by apply Zle_0_nat.
    rewrite IHn.
    rewrite Z2Nat.inj_mul; auto using Z.pow_nonneg.
  Qed.

  Lemma pow_Zpow : forall a n : nat, Z.of_nat (a ^ n) = Z.of_nat a ^ Z.of_nat n.
  Proof with auto using Zle_0_nat, Z.pow_nonneg.
    intros; apply Z2Nat.inj...
    rewrite <- pow_Z2N_Zpow, !Nat2Z.id...
  Qed.

  Lemma mod_exp_0 : forall a x m, x > 0 -> m > 1 -> a mod m = 0 ->
    a ^ x mod m = 0.
  Proof.
    intros.
    replace x with (Z.of_nat (Z.to_nat x)) in * by (apply Z2Nat.id; omega).
    induction (Z.to_nat x). {
      simpl in *; omega.
    } {
      rewrite Nat2Z.inj_succ in *.
      rewrite Z.pow_succ_r by omega.
      rewrite Z.mul_mod by omega.
      case_eq n; intros. {
        subst. simpl.
        rewrite Zmod_1_l by omega.
        rewrite H1.
        apply Zmod_0_l.
      } {
        subst.
        rewrite IHn by (rewrite Nat2Z.inj_succ in *; omega).
        rewrite H1.
        auto.
      }
    }
  Qed.

  Lemma mod_pow : forall (a m b : Z), (0 <= b) -> (m <> 0) ->
      a ^ b mod m = (a mod m) ^ b mod m.
  Proof.
    intros; rewrite <- (Z2Nat.id b) by auto.
    induction (Z.to_nat b); auto.
    rewrite Nat2Z.inj_succ.
    do 2 rewrite Z.pow_succ_r by apply Nat2Z.is_nonneg.
    rewrite Z.mul_mod by auto.
    rewrite (Z.mul_mod (a mod m) ((a mod m) ^ Z.of_nat n) m) by auto.
    rewrite <- IHn by auto.
    rewrite Z.mod_mod by auto.
    reflexivity.
  Qed.

  Ltac divide_exists_mul := let k := fresh "k" in
  match goal with
  | [ H : (?a | ?b) |- _ ] => apply Z.mod_divide in H; try apply Zmod_divides in H; destruct H as [k H]
  | [ |- (?a | ?b) ] => apply Z.mod_divide; try apply Zmod_divides
  end; (omega || auto).

  Lemma divide_mul_div: forall a b c (a_nonzero : a <> 0) (c_nonzero : c <> 0),
    (a | b * (a / c)) -> (c | a) -> (c | b).
  Proof.
    intros ? ? ? ? ? divide_a divide_c_a; do 2 divide_exists_mul.
    rewrite divide_c_a in divide_a.
    rewrite div_mul' in divide_a by auto.
    replace (b * k) with (k * b) in divide_a by ring.
    replace (c * k * k0) with (k * (k0 * c)) in divide_a by ring.
    rewrite Z.mul_cancel_l in divide_a by (intuition; rewrite H in divide_c_a; ring_simplify in divide_a; intuition).
    eapply Zdivide_intro; eauto.
  Qed.

  Lemma divide2_even_iff : forall n, (2 | n) <-> Z.even n = true.
  Proof.
    intro; split. {
      intro divide2_n.
      divide_exists_mul; [ | pose proof (Z.mod_pos_bound n 2); omega].
      rewrite divide2_n.
      apply Z.even_mul.
    } {
      intro n_even.
      pose proof (Zmod_even n).
      rewrite n_even in H.
      apply Zmod_divide; omega || auto.
    }
  Qed.

  Lemma prime_odd_or_2 : forall p (prime_p : prime p), p = 2 \/ Z.odd p = true.
  Proof.
    intros.
    apply Decidable.imp_not_l; try apply Z.eq_decidable.
    intros p_neq2.
    pose proof (Zmod_odd p) as mod_odd.
    destruct (Sumbool.sumbool_of_bool (Z.odd p)) as [? | p_not_odd]; auto.
    rewrite p_not_odd in mod_odd.
    apply Zmod_divides in mod_odd; try omega.
    destruct mod_odd as [c c_id].
    rewrite Z.mul_comm in c_id.
    apply Zdivide_intro in c_id.
    apply prime_divisors in c_id; auto.
    destruct c_id; [omega | destruct H; [omega | destruct H; auto]].
    pose proof (prime_ge_2 p prime_p); omega.
  Qed.

  Lemma mul_div_eq : forall a m, m > 0 -> m * (a / m) = (a - a mod m).
  Proof.
    intros.
    rewrite (Z_div_mod_eq a m) at 2 by auto.
    ring.
  Qed.

  Lemma mul_div_eq' : (forall a m, m > 0 -> (a / m) * m = (a - a mod m))%Z.
  Proof.
    intros.
    rewrite (Z_div_mod_eq a m) at 2 by auto.
    ring.
  Qed.

  Hint Rewrite mul_div_eq mul_div_eq' using lia : zdiv_to_mod.
  Hint Rewrite <- mul_div_eq' using lia : zmod_to_div.

  Ltac prime_bound := match goal with
  | [ H : prime ?p |- _ ] => pose proof (prime_ge_2 p H); try omega
  end.

  Lemma testbit_low : forall n x i, (0 <= i < n) ->
    Z.testbit x i = Z.testbit (Z.land x (Z.ones n)) i.
  Proof.
    intros.
    rewrite Z.land_ones by omega.
    symmetry.
    apply Z.mod_pow2_bits_low.
    omega.
  Qed.


  Lemma testbit_add_shiftl_low : forall i, (0 <= i) -> forall a b n, (i < n) ->
    Z.testbit (a + Z.shiftl b n) i = Z.testbit a i.
  Proof.
    intros.
    erewrite Z.testbit_low; eauto.
    rewrite Z.land_ones, Z.shiftl_mul_pow2 by omega.
    rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 n); omega).
    auto using Z.mod_pow2_bits_low.
  Qed.

  Lemma mod_div_eq0 : forall a b, 0 < b -> (a mod b) / b = 0.
  Proof.
    intros.
    apply Z.div_small.
    auto using Z.mod_pos_bound.
  Qed.
  Hint Rewrite mod_div_eq0 using lia : zsimplify.

  Lemma shiftr_add_shiftl_high : forall n m a b, 0 <= n <= m -> 0 <= a < 2 ^ n ->
    Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr b (m - n).
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2 by omega.
    replace (2 ^ m) with (2 ^ n * 2 ^ (m - n)) by
      (rewrite <-Z.pow_add_r by omega; f_equal; ring).
    rewrite <-Z.div_div, Z.div_add, (Z.div_small a) ; try solve
      [assumption || apply Z.pow_nonzero || apply Z.pow_pos_nonneg; omega].
    f_equal; ring.
  Qed.

  Lemma shiftr_add_shiftl_low : forall n m a b, 0 <= m <= n -> 0 <= a < 2 ^ n ->
    Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr a m + Z.shiftr b (m - n).
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2, Z.shiftr_mul_pow2 by omega.
    replace (2 ^ n) with (2 ^ (n - m) * 2 ^ m) by
      (rewrite <-Z.pow_add_r by omega; f_equal; ring).
    rewrite Z.mul_assoc, Z.div_add by (apply Z.pow_nonzero; omega).
    repeat f_equal; ring.
  Qed.

  Lemma testbit_add_shiftl_high : forall i, (0 <= i) -> forall a b n, (0 <= n <= i) ->
    0 <= a < 2 ^ n ->
    Z.testbit (a + Z.shiftl b n) i = Z.testbit b (i - n).
  Proof.
    intros ? ?.
    apply natlike_ind with (x := i); intros; try assumption;
      (destruct (Z_eq_dec 0 n); [ subst; rewrite Z.pow_0_r in *;
       replace a with 0 by omega; f_equal; ring | ]); try omega.
    rewrite <-Z.add_1_r at 1. rewrite <-Z.shiftr_spec by assumption.
    replace (Z.succ x - n) with (x - (n - 1)) by ring.
    rewrite shiftr_add_shiftl_low, <-Z.shiftl_opp_r with (a := b) by omega.
    rewrite <-H1 with (a := Z.shiftr a 1); try omega; [ repeat f_equal; ring | ].
    rewrite Z.shiftr_div_pow2 by omega.
    split; apply Z.div_pos || apply Z.div_lt_upper_bound;
      try solve [rewrite ?Z.pow_1_r; omega].
    rewrite <-Z.pow_add_r by omega.
    replace (1 + (n - 1)) with n by ring; omega.
  Qed.

  Lemma land_add_land : forall n m a b, (m <= n)%nat ->
    Z.land ((Z.land a (Z.ones (Z.of_nat n))) + (Z.shiftl b (Z.of_nat n))) (Z.ones (Z.of_nat m)) = Z.land a (Z.ones (Z.of_nat m)).
  Proof.
    intros.
    rewrite !Z.land_ones by apply Nat2Z.is_nonneg.
    rewrite Z.shiftl_mul_pow2 by apply Nat2Z.is_nonneg.
    replace (b * 2 ^ Z.of_nat n) with
      ((b * 2 ^ Z.of_nat (n - m)) * 2 ^ Z.of_nat m) by
      (rewrite (le_plus_minus m n) at 2; try assumption;
       rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg; ring).
    rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 (Z.of_nat m)); omega).
    symmetry. apply Znumtheory.Zmod_div_mod; try (apply Z.pow_pos_nonneg; omega).
    rewrite (le_plus_minus m n) by assumption.
    rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg.
    apply Z.divide_factor_l.
  Qed.

  Lemma div_pow2succ : forall n x, (0 <= x) ->
    n / 2 ^ Z.succ x = Z.div2 (n / 2 ^ x).
  Proof.
    intros.
    rewrite Z.pow_succ_r, Z.mul_comm by auto.
    rewrite <- Z.div_div by (try apply Z.pow_nonzero; omega).
    rewrite Zdiv2_div.
    reflexivity.
  Qed.

  Lemma shiftr_succ : forall n x,
    Z.shiftr n (Z.succ x) = Z.shiftr (Z.shiftr n x) 1.
  Proof.
    intros.
    rewrite Z.shiftr_shiftr by omega.
    reflexivity.
  Qed.


  Definition shiftl_by n a := Z.shiftl a n.

  Lemma shiftl_by_mul_pow2 : forall n a, 0 <= n -> Z.mul (2 ^ n) a = Z.shiftl_by n a.
  Proof.
    intros.
    unfold Z.shiftl_by.
    rewrite Z.shiftl_mul_pow2 by assumption.
    apply Z.mul_comm.
  Qed.

  Lemma map_shiftl : forall n l, 0 <= n -> map (Z.mul (2 ^ n)) l = map (Z.shiftl_by n) l.
  Proof.
    intros; induction l; auto using Z.shiftl_by_mul_pow2.
    simpl.
    rewrite IHl.
    f_equal.
    apply Z.shiftl_by_mul_pow2.
    assumption.
  Qed.

  Lemma odd_mod : forall a b, (b <> 0)%Z ->
    Z.odd (a mod b) = if Z.odd b then xorb (Z.odd a) (Z.odd (a / b)) else Z.odd a.
  Proof.
    intros.
    rewrite Zmod_eq_full by assumption.
    rewrite <-Z.add_opp_r, Z.odd_add, Z.odd_opp, Z.odd_mul.
    case_eq (Z.odd b); intros; rewrite ?Bool.andb_true_r, ?Bool.andb_false_r; auto using Bool.xorb_false_r.
  Qed.

  Lemma mod_same_pow : forall a b c, 0 <= c <= b -> a ^ b mod a ^ c = 0.
  Proof.
    intros.
    replace b with (b - c + c) by ring.
    rewrite Z.pow_add_r by omega.
    apply Z_mod_mult.
  Qed.
  Hint Rewrite mod_same_pow using lia : zsimplify.

  Lemma ones_succ : forall x, (0 <= x) ->
    Z.ones (Z.succ x) = 2 ^ x + Z.ones x.
  Proof.
    unfold Z.ones; intros.
    rewrite !Z.shiftl_1_l.
    rewrite Z.add_pred_r.
    apply Z.succ_inj.
    rewrite !Z.succ_pred.
    rewrite Z.pow_succ_r; omega.
  Qed.

  Lemma div_floor : forall a b c, 0 < b -> a < b * (Z.succ c) -> a / b <= c.
  Proof.
    intros.
    apply Z.lt_succ_r.
    apply Z.div_lt_upper_bound; try omega.
  Qed.

  Lemma shiftr_1_r_le : forall a b, a <= b ->
    Z.shiftr a 1 <= Z.shiftr b 1.
  Proof.
    intros.
    rewrite !Z.shiftr_div_pow2, Z.pow_1_r by omega.
    apply Z.div_le_mono; omega.
  Qed.

  Lemma ones_pred : forall i, 0 < i -> Z.ones (Z.pred i) = Z.shiftr (Z.ones i) 1.
  Proof.
    induction i; [ | | pose proof (Pos2Z.neg_is_neg p) ]; try omega.
    intros.
    unfold Z.ones.
    rewrite !Z.shiftl_1_l, Z.shiftr_div_pow2, <-!Z.sub_1_r, Z.pow_1_r, <-!Z.add_opp_r by omega.
    replace (2 ^ (Z.pos p)) with (2 ^ (Z.pos p - 1)* 2).
    rewrite Z.div_add_l by omega.
    reflexivity.
    change 2 with (2 ^ 1) at 2.
    rewrite <-Z.pow_add_r by (pose proof (Pos2Z.is_pos p); omega).
    f_equal. omega.
  Qed.

  Lemma shiftr_ones' : forall a n, 0 <= a < 2 ^ n -> forall i, (0 <= i) ->
    Z.shiftr a i <= Z.ones (n - i) \/ n <= i.
  Proof.
    intros until 1.
    apply natlike_ind.
    + unfold Z.ones.
      rewrite Z.shiftr_0_r, Z.shiftl_1_l, Z.sub_0_r.
      omega.
    + intros.
      destruct (Z_lt_le_dec x n); try omega.
      intuition.
      left.
      rewrite shiftr_succ.
      replace (n - Z.succ x) with (Z.pred (n - x)) by omega.
      rewrite Z.ones_pred by omega.
      apply Z.shiftr_1_r_le.
      assumption.
  Qed.

  Lemma shiftr_ones : forall a n i, 0 <= a < 2 ^ n -> (0 <= i) -> (i <= n) ->
    Z.shiftr a i <= Z.ones (n - i) .
  Proof.
    intros a n i G G0 G1.
    destruct (Z_le_lt_eq_dec i n G1).
    + destruct (Z.shiftr_ones' a n G i G0); omega.
    + subst; rewrite Z.sub_diag.
      destruct (Z_eq_dec a 0).
      - subst; rewrite Z.shiftr_0_l; reflexivity.
      - rewrite Z.shiftr_eq_0; try omega; try reflexivity.
        apply Z.log2_lt_pow2; omega.
  Qed.

  Lemma shiftr_upper_bound : forall a n, 0 <= n -> 0 <= a <= 2 ^ n -> Z.shiftr a n <= 1.
  Proof.
    intros a ? ? [a_nonneg a_upper_bound].
    apply Z_le_lt_eq_dec in a_upper_bound.
    destruct a_upper_bound.
    + destruct (Z_eq_dec 0 a).
      - subst; rewrite Z.shiftr_0_l; omega.
      - rewrite Z.shiftr_eq_0; auto; try omega.
        apply Z.log2_lt_pow2; auto; omega.
    + subst.
      rewrite Z.shiftr_div_pow2 by assumption.
      rewrite Z.div_same; try omega.
      assert (0 < 2 ^ n) by (apply Z.pow_pos_nonneg; omega).
      omega.
  Qed.

  Lemma lor_shiftl : forall a b n, 0 <= n -> 0 <= a < 2 ^ n ->
    Z.lor a (Z.shiftl b n) = a + (Z.shiftl b n).
  Proof.
    intros.
    apply Z.bits_inj'; intros t ?.
    rewrite Z.lor_spec, Z.shiftl_spec by assumption.
    destruct (Z_lt_dec t n).
    + rewrite testbit_add_shiftl_low by omega.
      rewrite Z.testbit_neg_r with (n := t - n) by omega.
      apply Bool.orb_false_r.
    + rewrite testbit_add_shiftl_high by omega.
      replace (Z.testbit a t) with false; [ apply Bool.orb_false_l | ].
      symmetry.
      apply Z.testbit_false; try omega.
      rewrite Z.div_small; try reflexivity.
      split; try eapply Z.lt_le_trans with (m := 2 ^ n); try omega.
      apply Z.pow_le_mono_r; omega.
  Qed.

  (* prove that combinations of known positive/nonnegative numbers are positive/nonnegative *)
  Ltac zero_bounds' :=
    repeat match goal with
    | [ |- 0 <= _ + _] => apply Z.add_nonneg_nonneg
    | [ |- 0 <= _ - _] => apply Z.le_0_sub
    | [ |- 0 <= _ * _] => apply Z.mul_nonneg_nonneg
    | [ |- 0 <= _ / _] => apply Z.div_pos
    | [ |- 0 <= _ ^ _ ] => apply Z.pow_nonneg
    | [ |- 0 <= Z.shiftr _ _] => apply Z.shiftr_nonneg
    | [ |- 0 <= _ mod _] => apply Z.mod_pos_bound
    | [ |- 0 < _ + _] => try solve [apply Z.add_pos_nonneg; zero_bounds'];
                         try solve [apply Z.add_nonneg_pos; zero_bounds']
    | [ |- 0 < _ - _] => apply Z.lt_0_sub
    | [ |- 0 < _ * _] => apply Z.lt_0_mul; left; split
    | [ |- 0 < _ / _] => apply Z.div_str_pos
    | [ |- 0 < _ ^ _ ] => apply Z.pow_pos_nonneg
    end; try omega; try prime_bound; auto.

  Ltac zero_bounds := try omega; try prime_bound; zero_bounds'.

  Hint Extern 1 => progress zero_bounds : zero_bounds.

  Lemma ones_nonneg : forall i, (0 <= i) -> 0 <= Z.ones i.
  Proof.
    apply natlike_ind.
    + unfold Z.ones. simpl; omega.
    + intros.
      rewrite Z.ones_succ by assumption.
      zero_bounds.
  Qed.

  Lemma ones_pos_pos : forall i, (0 < i) -> 0 < Z.ones i.
  Proof.
    intros.
    unfold Z.ones.
    rewrite Z.shiftl_1_l.
    apply Z.lt_succ_lt_pred.
    apply Z.pow_gt_1; omega.
  Qed.

  Lemma N_le_1_l : forall p, (1 <= N.pos p)%N.
  Proof.
    destruct p; cbv; congruence.
  Qed.

  Lemma Pos_land_upper_bound_l : forall a b, (Pos.land a b <= N.pos a)%N.
  Proof.
    induction a; destruct b; intros; try solve [cbv; congruence];
      simpl; specialize (IHa b); case_eq (Pos.land a b); intro; simpl;
      try (apply N_le_1_l || apply N.le_0_l); intro land_eq;
      rewrite land_eq in *; unfold N.le, N.compare in *;
      rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI, ?Pos.compare_xO_xO;
      try assumption.
    destruct (p ?=a)%positive; cbv; congruence.
  Qed.

  Lemma land_upper_bound_l : forall a b, (0 <= a) -> (0 <= b) ->
    Z.land a b <= a.
  Proof.
    intros.
    destruct a, b; try solve [exfalso; auto]; try solve [cbv; congruence].
    cbv [Z.land].
    rewrite <-N2Z.inj_pos, <-N2Z.inj_le.
    auto using Pos_land_upper_bound_l.
  Qed.

  Lemma land_upper_bound_r : forall a b, (0 <= a) -> (0 <= b) ->
    Z.land a b <= b.
  Proof.
    intros.
    rewrite Z.land_comm.
    auto using Z.land_upper_bound_l.
  Qed.

  Lemma le_fold_right_max : forall low l x, (forall y, In y l -> low <= y) ->
    In x l -> x <= fold_right Z.max low l.
  Proof.
    induction l; intros ? lower_bound In_list; [cbv [In] in *; intuition | ].
    simpl.
    destruct (in_inv In_list); subst.
    + apply Z.le_max_l.
    + etransitivity.
      - apply IHl; auto; intuition.
      - apply Z.le_max_r.
  Qed.

  Lemma le_fold_right_max_initial : forall low l, low <= fold_right Z.max low l.
  Proof.
    induction l; intros; try reflexivity.
    etransitivity; [ apply IHl | apply Z.le_max_r ].
  Qed.

  Ltac ltb_to_lt :=
    repeat match goal with
           | [ H : (?x <? ?y) = ?b |- _ ]
             => let H' := fresh in
                rename H into H';
                pose proof (Zlt_cases x y) as H;
                rewrite H' in H;
                clear H'
           end.

  Ltac compare_to_sgn :=
    repeat match goal with
           | [ H : _ |- _ ] => progress rewrite <- ?Z.sgn_neg_iff, <- ?Z.sgn_pos_iff, <- ?Z.sgn_null_iff in H
           | _ => progress rewrite <- ?Z.sgn_neg_iff, <- ?Z.sgn_pos_iff, <- ?Z.sgn_null_iff
           end.

  Local Ltac replace_to_const c :=
    repeat match goal with
           | [ H : ?x = ?x |- _ ] => clear H
           | [ H : ?x = c, H' : context[?x] |- _ ] => rewrite H in H'
           | [ H : c = ?x, H' : context[?x] |- _ ] => rewrite <- H in H'
           | [ H : ?x = c |- context[?x] ] => rewrite H
           | [ H : c = ?x |- context[?x] ] => rewrite <- H
           end.

  Lemma lt_div_0 n m : n / m < 0 <-> ((n < 0 < m \/ m < 0 < n) /\ 0 < -(n / m)).
  Proof.
    Z.compare_to_sgn; rewrite Z.sgn_opp; simpl.
    pose proof (Zdiv_sgn n m) as H.
    pose proof (Z.sgn_spec (n / m)) as H'.
    repeat first [ progress intuition auto
                 | progress simpl in *
                 | congruence
                 | lia
                 | progress replace_to_const (-1)
                 | progress replace_to_const 0
                 | progress replace_to_const 1
                 | match goal with
                   | [ x : Z |- _ ] => destruct x
                   end ].
  Qed.

  Lemma two_times_x_minus_x x : 2 * x - x = x.
  Proof. lia. Qed.

  Lemma mul_div_le x y z
        (Hx : 0 <= x) (Hy : 0 <= y) (Hz : 0 < z)
        (Hyz : y <= z)
    : x * y / z <= x.
  Proof.
    transitivity (x * z / z); [ | rewrite Z.div_mul by lia; lia ].
    apply Z_div_le; nia.
  Qed.

  Hint Resolve mul_div_le : zarith.

  Lemma div_mul_diff_exact a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * a / b = c * (a / b) + (c * (a mod b)) / b.
  Proof.
    rewrite (Z_div_mod_eq a b) at 1 by lia.
    rewrite Z.mul_add_distr_l.
    replace (c * (b * (a / b))) with ((c * (a / b)) * b) by lia.
    rewrite Z.div_add_l by lia.
    lia.
  Qed.

  Lemma div_mul_diff_exact' a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * (a / b) = c * a / b - (c * (a mod b)) / b.
  Proof.
    rewrite div_mul_diff_exact by assumption; lia.
  Qed.

  Lemma div_mul_diff a b c
        (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
    : c * a / b - c * (a / b) <= c.
  Proof.
    rewrite div_mul_diff_exact by assumption.
    ring_simplify; auto with zarith.
  Qed.

  Lemma div_mul_le_le a b c
    :  0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b <= c * (a / b) + c.
  Proof.
    pose proof (Z.div_mul_diff a b c); split; try apply Z.div_mul_le; lia.
  Qed.

  Lemma div_mul_le_le_offset a b c
    : 0 <= a -> 0 < b -> 0 <= c -> c * a / b - c <= c * (a / b).
  Proof.
    pose proof (Z.div_mul_le_le a b c); lia.
  Qed.

  Hint Resolve Zmult_le_compat_r Zmult_le_compat_l Z_div_le Z.div_mul_le_le_offset Z.add_le_mono Z.sub_le_mono : zarith.

  (** * [Z.simplify_fractions_le] *)
  (** The culmination of this series of tactics,
      [Z.simplify_fractions_le], will use the fact that [a * (b / c) <=
      (a * b) / c], and do some reasoning modulo associativity and
      commutativity in [Z] to perform such a reduction.  It may leave
      over goals if it cannot prove that some denominators are non-zero.
      If the rewrite [a * (b / c)] → [(a * b) / c] is safe to do on the
      LHS of the goal, this tactic should not turn a solvable goal into
      an unsolvable one.

      After running, the tactic does some basic rewriting to simplify
      fractions, e.g., that [a * b / b = a]. *)
  Ltac split_sums_step :=
    match goal with
    | [ |- _ + _ <= _ ]
      => etransitivity; [ eapply Z.add_le_mono | ]
    | [ |- _ - _ <= _ ]
      => etransitivity; [ eapply Z.sub_le_mono | ]
    end.
  Ltac split_sums :=
    try (split_sums_step; [ split_sums.. | ]).
  Ltac pre_reorder_fractions_step :=
    match goal with
    | [ |- context[?x / ?y * ?z] ]
      => rewrite (Z.mul_comm (x / y) z)
    | _ => let LHS := match goal with |- ?LHS <= ?RHS => LHS end in
           match LHS with
           | context G[?x * (?y / ?z)]
             => let G' := context G[(x * y) / z] in
                transitivity G'
           end
    end.
  Ltac pre_reorder_fractions :=
    try first [ split_sums_step; [ pre_reorder_fractions.. | ]
              | pre_reorder_fractions_step; [ .. | pre_reorder_fractions ] ].
  Ltac split_comparison :=
    match goal with
    | [ |- ?x <= ?x ] => reflexivity
    | [ H : _ >= _ |- _ ]
      => apply Z.ge_le_iff in H
    | [ |- ?x * ?y <= ?z * ?w ]
      => lazymatch goal with
         | [ H : 0 <= x |- _ ] => idtac
         | [ H : x < 0 |- _ ] => fail
         | _ => destruct (Z_lt_le_dec x 0)
         end;
         [ ..
         | lazymatch goal with
           | [ H : 0 <= y |- _ ] => idtac
           | [ H : y < 0 |- _ ] => fail
           | _ => destruct (Z_lt_le_dec y 0)
           end;
           [ ..
           | apply Zmult_le_compat; [ | | assumption | assumption ] ] ]
    | [ |- ?x / ?y <= ?z / ?y ]
      => lazymatch goal with
         | [ H : 0 < y |- _ ] => idtac
         | [ H : y <= 0 |- _ ] => fail
         | _ => destruct (Z_lt_le_dec 0 y)
         end;
         [ apply Z_div_le; [ apply Z.gt_lt_iff; assumption | ]
         | .. ]
    | [ |- ?x / ?y <= ?x / ?z ]
      => lazymatch goal with
         | [ H : 0 <= x |- _ ] => idtac
         | [ H : x < 0 |- _ ] => fail
         | _ => destruct (Z_lt_le_dec x 0)
         end;
         [ ..
         | lazymatch goal with
           | [ H : 0 < z |- _ ] => idtac
           | [ H : z <= 0 |- _ ] => fail
           | _ => destruct (Z_lt_le_dec 0 z)
           end;
           [ apply Z.div_le_compat_l; [ assumption | split; [ assumption | ] ]
           | .. ] ]
    | [ |- _ + _ <= _ + _ ]
      => apply Z.add_le_mono
    | [ |- _ - _ <= _ - _ ]
      => apply Z.sub_le_mono
    | [ |- ?x * (?y / ?z) <= (?x * ?y) / ?z ]
      => apply Z.div_mul_le
    end.
  Ltac split_comparison_fin_step :=
    match goal with
    | _ => assumption
    | _ => lia
    | _ => progress subst
    | [ H : ?n * ?m < 0 |- _ ]
      => apply (proj1 (Z.lt_mul_0 n m)) in H; destruct H as [[??]|[??]]
    | [ H : ?n / ?m < 0 |- _ ]
      => apply (proj1 (lt_div_0 n m)) in H; destruct H as [[[??]|[??]]?]
    | [ H : (?x^?y) <= ?n < _, H' : ?n < 0 |- _ ]
      => assert (0 <= x^y) by zero_bounds; lia
    | [ H : (?x^?y) < 0 |- _ ]
      => assert (0 <= x^y) by zero_bounds; lia
    | [ H : (?x^?y) <= 0 |- _ ]
      => let H' := fresh in
         assert (H' : 0 <= x^y) by zero_bounds;
         assert (x^y = 0) by lia;
         clear H H'
    | [ H : _^_ = 0 |- _ ]
      => apply Z.pow_eq_0_iff in H; destruct H as [?|[??]]
    | [ H : 0 <= ?x, H' : ?x - 1 < 0 |- _ ]
      => assert (x = 0) by lia; clear H H'
    | [ |- ?x <= ?y ] => is_evar x; reflexivity
    | [ |- ?x <= ?y ] => is_evar y; reflexivity
    end.
  Ltac split_comparison_fin := repeat split_comparison_fin_step.
  Ltac simplify_fractions_step :=
    match goal with
    | _ => rewrite Z.div_mul by (try apply Z.pow_nonzero; zero_bounds)
    | [ |- context[?x * ?y / ?x] ]
      => rewrite (Z.mul_comm x y)
    | [ |- ?x <= ?x ] => reflexivity
    end.
  Ltac simplify_fractions := repeat simplify_fractions_step.
  Ltac simplify_fractions_le :=
    pre_reorder_fractions;
    [ repeat split_comparison; split_comparison_fin; zero_bounds..
    | simplify_fractions ].

  Lemma log2_nonneg' n a : n <= 0 -> n <= Z.log2 a.
  Proof.
    intros; transitivity 0; auto with zarith.
  Qed.

  Hint Resolve log2_nonneg' : zarith.

  (** We create separate databases for two directions of transformations
      involving [Z.log2]; combining them leads to loops. *)
  (* for hints that take in hypotheses of type [log2 _], and spit out conclusions of type [_ ^ _] *)
  Create HintDb hyp_log2.

  (* for hints that take in hypotheses of type [_ ^ _], and spit out conclusions of type [log2 _] *)
  Create HintDb concl_log2.

  Hint Resolve (fun a b H => proj1 (Z.log2_lt_pow2 a b H)) (fun a b H => proj1 (Z.log2_le_pow2 a b H)) : concl_log2.
  Hint Resolve (fun a b H => proj2 (Z.log2_lt_pow2 a b H)) (fun a b H => proj2 (Z.log2_le_pow2 a b H)) : hyp_log2.

  Lemma le_lt_to_log2 x y z : 0 <= z -> 0 < y -> 2^x <= y < 2^z -> x <= Z.log2 y < z.
  Proof.
    destruct (Z_le_gt_dec 0 x); auto with concl_log2 lia.
  Qed.

  Lemma div_x_y_x x y : 0 < x -> 0 < y -> x / y / x = 1 / y.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm y x), <- Z.div_div, Z.div_same by lia.
    reflexivity.
  Qed.

  Hint Rewrite div_x_y_x using lia : zsimplify.

  Lemma mod_opp_l_z_iff a b (H : b <> 0) : a mod b = 0 <-> (-a) mod b = 0.
  Proof.
    split; intro H'; apply Z.mod_opp_l_z in H'; rewrite ?Z.opp_involutive in H'; assumption.
  Qed.

  Lemma opp_eq_0_iff a : -a = 0 <-> a = 0.
  Proof. lia. Qed.

  Hint Rewrite <- mod_opp_l_z_iff using lia : zsimplify.
  Hint Rewrite opp_eq_0_iff : zsimplify.

  Lemma sub_pos_bound a b X : 0 <= a < X -> 0 <= b < X -> -X < a - b < X.
  Proof. lia. Qed.

  Lemma div_opp_l_complete a b (Hb : b <> 0) : -a/b = -(a/b) - (if Z_zerop (a mod b) then 0 else 1).
  Proof.
    destruct (Z_zerop (a mod b)); autorewrite with zsimplify push_Zopp; reflexivity.
  Qed.

  Lemma div_opp_l_complete' a b (Hb : b <> 0) : -(a/b) = -a/b + (if Z_zerop (a mod b) then 0 else 1).
  Proof.
    destruct (Z_zerop (a mod b)); autorewrite with zsimplify pull_Zopp; lia.
  Qed.

  Hint Rewrite Z.div_opp_l_complete using lia : pull_Zopp.
  Hint Rewrite Z.div_opp_l_complete' using lia : push_Zopp.

  Lemma div_opp a : a <> 0 -> -a / a = -1.
  Proof.
    intros; autorewrite with pull_Zopp zsimplify; lia.
  Qed.

  Hint Rewrite Z.div_opp using lia : zsimplify.

  Lemma div_sub_1_0 x : x > 0 -> (x - 1) / x = 0.
  Proof. auto with zarith lia. Qed.

  Hint Rewrite div_sub_1_0 using lia : zsimplify.

  Lemma sub_pos_bound_div a b X : 0 <= a < X -> 0 <= b < X -> -1 <= (a - b) / X <= 0.
  Proof.
    intros H0 H1; pose proof (Z.sub_pos_bound a b X H0 H1).
    assert (Hn : -X <= a - b) by lia.
    assert (Hp : a - b <= X - 1) by lia.
    split; etransitivity; [ | apply Z_div_le, Hn; lia | apply Z_div_le, Hp; lia | ];
      instantiate; autorewrite with zsimplify; try reflexivity.
  Qed.

  Hint Resolve (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1))
       (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) : zarith.

  Lemma sub_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (a - b) / X = if a <? b then -1 else 0.
  Proof.
    intros H0 H1; pose proof (Z.sub_pos_bound_div a b X H0 H1).
    destruct (a <? b) eqn:?; Z.ltb_to_lt.
    { cut ((a - b) / X <> 0); [ lia | ].
      autorewrite with zstrip_div; auto with zarith lia. }
    { autorewrite with zstrip_div; auto with zarith lia. }
  Qed.

  Lemma add_opp_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (-b + a) / X = if a <? b then -1 else 0.
  Proof.
    rewrite !(Z.add_comm (-_)), !Z.add_opp_r.
    apply Z.sub_pos_bound_div_eq.
  Qed.

  Hint Rewrite Z.sub_pos_bound_div_eq Z.add_opp_pos_bound_div_eq using lia : zstrip_div.

  Lemma div_small_sym a b : 0 <= a < b -> 0 = a / b.
  Proof. intros; symmetry; apply Z.div_small; assumption. Qed.

  Lemma mod_small_sym a b : 0 <= a < b -> a = a mod b.
  Proof. intros; symmetry; apply Z.mod_small; assumption. Qed.

  Hint Resolve div_small_sym mod_small_sym : zarith.

  Lemma div_add' a b c : c <> 0 -> (a + c * b) / c = a / c + b.
  Proof. intro; rewrite <- Z.div_add, (Z.mul_comm c); try lia. Qed.

  Lemma div_add_l' a b c : b <> 0 -> (b * a + c) / b = a + c / b.
  Proof. intro; rewrite <- Z.div_add_l, (Z.mul_comm b); lia. Qed.

  Hint Rewrite div_add_l' div_add' using lia : zsimplify.

  Lemma div_add_sub_l a b c d : b <> 0 -> (a * b + c - d) / b = a + (c - d) / b.
  Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l. Qed.

  Lemma div_add_sub_l' a b c d : b <> 0 -> (b * a + c - d) / b = a + (c - d) / b.
  Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l'. Qed.

  Lemma div_add_sub a b c d : c <> 0 -> (a + b * c - d) / c = (a - d) / c + b.
  Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l. Qed.

  Lemma div_add_sub' a b c d : c <> 0 -> (a + c * b - d) / c = (a - d) / c + b.
  Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l'. Qed.

  Hint Rewrite Z.div_add_sub Z.div_add_sub' Z.div_add_sub_l Z.div_add_sub_l' using lia : zsimplify.

  Lemma div_mul_skip a b k : 0 < b -> 0 < k -> a * b / k / b = a / k.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia.
    autorewrite with zsimplify; reflexivity.
  Qed.

  Lemma div_mul_skip' a b k : 0 < b -> 0 < k -> b * a / k / b = a / k.
  Proof.
    intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia.
    autorewrite with zsimplify; reflexivity.
  Qed.

  Hint Rewrite Z.div_mul_skip Z.div_mul_skip' using lia : zsimplify.
End Z.

Module Export BoundsTactics.
  Ltac prime_bound := Z.prime_bound.
  Ltac zero_bounds := Z.zero_bounds.
End BoundsTactics.