aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZRange/CornersMonotoneBounds.v
blob: f41c712ed4e6d56f065cc929e2f9452ebaffd510 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
Require Import Coq.Classes.Morphisms.
Require Import Coq.ZArith.ZArith.
Require Import Coq.micromega.Psatz.
Require Import Crypto.Util.ZUtil.Tactics.SplitMinMax.
Require Import Crypto.Util.ZUtil.Stabilization.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.PointedProp.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.Operations.
Require Import Crypto.Util.ZRange.BasicLemmas.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.SpecializeBy.

Local Open Scope Z_scope.

Module ZRange.
  Import Operations.ZRange.
  Local Arguments is_bounded_by' !_ _ _ / .

  Lemma monotone_two_corners_genb
        (f : Z -> Z)
        (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
        (Hmonotone : exists b, Proper (R b ==> Z.le) f)
        x_bs x
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
    : ZRange.is_bounded_by' None (two_corners f x_bs) (f x).
  Proof.
    split; trivial.
    destruct x_bs as [lx ux]; simpl in *.
    destruct Hboundedx as [Hboundedx _].
    destruct_head'_ex.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) f |- _ ]
             => unique assert (R b (if b then lx else x) (if b then x else lx)
                               /\ R b (if b then x else ux) (if b then ux else x))
               by (unfold R, Basics.flip; destruct b; omega)
           end.
    destruct_head' and.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) _, H' : R ?b _ _ |- _ ]
             => unique pose proof (H _ _ H')
           end.
    destruct_head bool; split_min_max; omega.
  Qed.

  Lemma monotone_two_corners_gen
        (f : Z -> Z)
        (Hmonotone : Proper (Z.le ==> Z.le) f \/ Proper (Basics.flip Z.le ==> Z.le) f)
        x_bs x
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
    : ZRange.is_bounded_by' None (ZRange.two_corners f x_bs) (f x).
  Proof.
    eapply monotone_two_corners_genb; auto.
    destruct Hmonotone; [ exists true | exists false ]; assumption.
  Qed.
  Lemma monotone_two_corners
        (b : bool)
        (f : Z -> Z)
        (R := if b then Z.le else Basics.flip Z.le)
        (Hmonotone : Proper (R ==> Z.le) f)
        x_bs x
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
    : ZRange.is_bounded_by' None (ZRange.two_corners f x_bs) (f x).
  Proof.
    apply monotone_two_corners_genb; auto; subst R;
      exists b.
    intros ???; apply Hmonotone; auto.
  Qed.

  Lemma monotone_four_corners_genb
        (f : Z -> Z -> Z)
        (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
        (Hmonotone1 : forall x, exists b, Proper (R b ==> Z.le) (f x))
        (Hmonotone2 : forall y, exists b, Proper (R b ==> Z.le) (fun x => f x y))
        x_bs y_bs x y
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
    : ZRange.is_bounded_by' None (ZRange.four_corners f x_bs y_bs) (f x y).
  Proof.
    destruct x_bs as [lx ux].
    cbn [ZRange.four_corners lower upper].
    pose proof (monotone_two_corners_genb (f lx) (Hmonotone1 _) _ _ Hboundedy) as Hmono_fl.
    pose proof (monotone_two_corners_genb (f ux) (Hmonotone1 _) _ _ Hboundedy) as Hmono_fu.
    repeat match goal with
           | [ |- context[ZRange.two_corners ?x ?y] ]
             => let l := fresh "lf" in
                let u := fresh "uf" in
                generalize dependent (ZRange.two_corners x y); intros [l u]; intros
           end.
    unfold ZRange.is_bounded_by', union in *; simpl in *; split; trivial.
    destruct_head'_and; destruct_head' True.
    pose proof (Hmonotone2 y).
    destruct_head'_ex.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) (f _) |- _ ]
             => unique assert (R b (if b then ly else y) (if b then y else ly)
                               /\ R b (if b then y else uy) (if b then uy else y))
               by (unfold R, Basics.flip; destruct b; omega)
           | [ H : Proper (R ?b ==> Z.le) (fun x => f x _) |- _ ]
             => unique assert (R b (if b then lx else x) (if b then x else lx)
                               /\ R b (if b then x else ux) (if b then ux else x))
               by (unfold R, Basics.flip; destruct b; omega)
           end.
    destruct_head' and.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) _, H' : R ?b _ _ |- _ ]
             => unique pose proof (H _ _ H')
           end; cbv beta in *.
    destruct_head bool; split_min_max; omega.
  Qed.

  Lemma monotone_four_corners_gen
        (f : Z -> Z -> Z)
        (Hmonotone1 : forall x, Proper (Z.le ==> Z.le) (f x) \/ Proper (Basics.flip Z.le ==> Z.le) (f x))
        (Hmonotone2 : forall y, Proper (Z.le ==> Z.le) (fun x => f x y) \/ Proper (Basics.flip Z.le ==> Z.le) (fun x => f x y))
        x_bs y_bs x y
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
    : ZRange.is_bounded_by' None (ZRange.four_corners f x_bs y_bs) (f x y).
  Proof.
    eapply monotone_four_corners_genb; auto.
    { intro x'; destruct (Hmonotone1 x'); [ exists true | exists false ]; assumption. }
    { intro x'; destruct (Hmonotone2 x'); [ exists true | exists false ]; assumption. }
  Qed.
  Lemma monotone_four_corners
        (b1 b2 : bool)
        (f : Z -> Z -> Z)
        (R1 := if b1 then Z.le else Basics.flip Z.le) (R2 := if b2 then Z.le else Basics.flip Z.le)
        (Hmonotone : Proper (R1 ==> R2 ==> Z.le) f)
        x_bs y_bs x y
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
    : ZRange.is_bounded_by' None (ZRange.four_corners f x_bs y_bs) (f x y).
  Proof.
    apply monotone_four_corners_genb; auto; intro x'; subst R1 R2;
      [ exists b2 | exists b1 ];
      [ eapply (Hmonotone x' x'); destruct b1; reflexivity
      | intros ???; apply Hmonotone; auto; destruct b2; reflexivity ].
  Qed.

  Lemma monotone_eight_corners_genb
        (f : Z -> Z -> Z -> Z)
        (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
        (Hmonotone1 : forall x y, exists b, Proper (R b ==> Z.le) (f x y))
        (Hmonotone2 : forall x z, exists b, Proper (R b ==> Z.le) (fun y => f x y z))
        (Hmonotone3 : forall y z, exists b, Proper (R b ==> Z.le) (fun x => f x y z))
        x_bs y_bs z_bs x y z
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
        (Hboundedz : ZRange.is_bounded_by' None z_bs z)
    : ZRange.is_bounded_by' None (ZRange.eight_corners f x_bs y_bs z_bs) (f x y z).
  Proof.
    destruct x_bs as [lx ux].
    unfold ZRange.eight_corners; cbn [lower upper].
    pose proof (monotone_four_corners_genb (f lx) (Hmonotone1 _) (Hmonotone2 _) _ _ _ _ Hboundedy Hboundedz) as Hmono_fl.
    pose proof (monotone_four_corners_genb (f ux) (Hmonotone1 _) (Hmonotone2 _) _ _ _ _ Hboundedy Hboundedz) as Hmono_fu.
    repeat match goal with
           | [ |- context[ZRange.four_corners ?x ?y ?z] ]
             => let l := fresh "lf" in
                let u := fresh "uf" in
                generalize dependent (ZRange.four_corners x y z); intros [l u]; intros
           end.
    unfold ZRange.is_bounded_by' in *; simpl in *; split; trivial.
    destruct_head'_and; destruct_head' True.
    pose proof (Hmonotone3 y z).
    destruct_head'_ex.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) (f _ _) |- _ ]
             => unique assert (R b (if b then lz else z) (if b then z else lz)
                               /\ R b (if b then z else uz) (if b then uz else z))
               by (unfold R, Basics.flip; destruct b; omega)
           | [ H : Proper (R ?b ==> Z.le) (fun y' => f _ y' _) |- _ ]
             => unique assert (R b (if b then ly else y) (if b then y else ly)
                               /\ R b (if b then y else uy) (if b then uy else y))
               by (unfold R, Basics.flip; destruct b; omega)
           | [ H : Proper (R ?b ==> Z.le) (fun x' => f x' _ _) |- _ ]
             => unique assert (R b (if b then lx else x) (if b then x else lx)
                               /\ R b (if b then x else ux) (if b then ux else x))
               by (unfold R, Basics.flip; destruct b; omega)
           end.
    destruct_head' and.
    repeat match goal with
           | [ H : Proper (R ?b ==> Z.le) _, H' : R ?b _ _ |- _ ]
             => unique pose proof (H _ _ H')
           end.
    destruct_head bool; split_min_max; omega.
  Qed.

  Lemma monotone_eight_corners_gen
        (f : Z -> Z -> Z -> Z)
        (Hmonotone1 : forall x y, Proper (Z.le ==> Z.le) (f x y) \/ Proper (Basics.flip Z.le ==> Z.le) (f x y))
        (Hmonotone2 : forall x z, Proper (Z.le ==> Z.le) (fun y => f x y z) \/ Proper (Basics.flip Z.le ==> Z.le) (fun y => f x y z))
        (Hmonotone3 : forall y z, Proper (Z.le ==> Z.le) (fun x => f x y z) \/ Proper (Basics.flip Z.le ==> Z.le) (fun x => f x y z))
        x_bs y_bs z_bs x y z
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
        (Hboundedz : ZRange.is_bounded_by' None z_bs z)
    : ZRange.is_bounded_by' None (ZRange.eight_corners f x_bs y_bs z_bs) (f x y z).
  Proof.
    eapply monotone_eight_corners_genb; auto.
    { intros x' y'; destruct (Hmonotone1 x' y'); [ exists true | exists false ]; assumption. }
    { intros x' y'; destruct (Hmonotone2 x' y'); [ exists true | exists false ]; assumption. }
    { intros x' y'; destruct (Hmonotone3 x' y'); [ exists true | exists false ]; assumption. }
  Qed.
  Lemma monotone_eight_corners
        (b1 b2 b3 : bool)
        (f : Z -> Z -> Z -> Z)
        (R1 := if b1 then Z.le else Basics.flip Z.le)
        (R2 := if b2 then Z.le else Basics.flip Z.le)
        (R3 := if b3 then Z.le else Basics.flip Z.le)
        (Hmonotone : Proper (R1 ==> R2 ==> R3 ==> Z.le) f)
        x_bs y_bs z_bs x y z
        (Hboundedx : ZRange.is_bounded_by' None x_bs x)
        (Hboundedy : ZRange.is_bounded_by' None y_bs y)
        (Hboundedz : ZRange.is_bounded_by' None z_bs z)
    : ZRange.is_bounded_by' None (ZRange.eight_corners f x_bs y_bs z_bs) (f x y z).
  Proof.
    apply monotone_eight_corners_genb; auto; intro x'; subst R1 R2 R3;
      [ exists b3 | exists b2 | exists b1 ];
      intros ???; apply Hmonotone; break_innermost_match; try reflexivity; trivial.
  Qed.

  Lemma monotonify2 (f : Z -> Z -> Z) (upper : Z -> Z -> Z)
        (Hbounded : forall a b, Z.abs (f a b) <= upper (Z.abs a) (Z.abs b))
        (Hupper_monotone : Proper (Z.le ==> Z.le ==> Z.le) upper)
        {xb yb x y}
        (Hboundedx : ZRange.is_bounded_by' None xb x)
        (Hboundedy : ZRange.is_bounded_by' None yb y)
        (abs_x := ZRange.upper (ZRange.abs xb))
        (abs_y := ZRange.upper (ZRange.abs yb))
    : ZRange.is_bounded_by'
        None
        {| ZRange.lower := -upper abs_x abs_y;
           ZRange.upper := upper abs_x abs_y |}
        (f x y).
  Proof.
    split; [ | exact I ]; subst abs_x abs_y; simpl.
    apply Z.abs_le.
    destruct Hboundedx as [Hx _], Hboundedy as [Hy _].
    etransitivity; [ apply Hbounded | ].
    apply Hupper_monotone;
      unfold ZRange.abs;
      repeat (apply Z.max_case_strong || apply Zabs_ind); omega.
  Qed.
End ZRange.