aboutsummaryrefslogtreecommitdiff
path: root/src/Util/Tuple.v
blob: 15a248afea25974216d2f5b44854cb190369bc31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
Require Import Coq.Classes.Morphisms.
Require Import Relation_Definitions.
Require Import Crypto.Util.Decidable.
Require Export Crypto.Util.FixCoqMistakes.

Fixpoint tuple' T n : Type :=
  match n with
  | O => T
  | S n' => (tuple' T n' * T)%type
  end.

Definition tuple T n : Type :=
  match n with
  | O => unit
  | S n' => tuple' T n'
  end.

Fixpoint to_list' {T} (n:nat) {struct n} : tuple' T n -> list T :=
  match n with
  | 0 => fun x => (x::nil)%list
  | S n' => fun xs : tuple' T (S n') => let (xs', x) := xs in (x :: to_list' n' xs')%list
  end.

Definition to_list {T} (n:nat) : tuple T n -> list T :=
  match n with
  | 0 => fun _ => nil
  | S n' => fun xs : tuple T (S n') => to_list' n' xs
  end.

Program Fixpoint from_list' {T} (y:T) (n:nat) (xs:list T) : length xs = n -> tuple' T n :=
  match n return _ with
  | 0 =>
    match xs return (length xs = 0 -> tuple' T 0) with
    | nil => fun _ => y
    | _ => _ (* impossible *)
    end
  | S n' =>
    match xs return (length xs = S n' -> tuple' T (S n')) with
    | cons x xs' => fun _ => (from_list' x n' xs' _, y)
    | _ => _ (* impossible *)
    end
  end.

Program Definition from_list {T} (n:nat) (xs:list T) : length xs = n -> tuple T n :=
match n return _ with
| 0 =>
    match xs return (length xs = 0 -> tuple T 0) with
    | nil => fun _ : 0 = 0 => tt
    | _ => _ (* impossible *)
    end
| S n' =>
    match xs return (length xs = S n' -> tuple T (S n')) with
    | cons x xs' => fun _ => from_list' x n' xs' _
    | _ => _ (* impossible *)
    end
end.

Lemma to_list_from_list : forall {T} (n:nat) (xs:list T) pf, to_list n (from_list n xs pf) = xs.
Proof.
  destruct xs; simpl; intros; subst; auto.
  generalize dependent t. simpl in *.
  induction xs; simpl in *; intros; congruence.
Qed.

Lemma length_to_list : forall {T} {n} (xs:tuple T n), length (to_list n xs) = n.
Proof.
  destruct n; auto; intros; simpl in *.
  induction n; auto; intros; simpl in *.
  destruct xs; simpl in *; eauto.
Qed.

Lemma from_list'_to_list' : forall T n (xs:tuple' T n),
    forall x xs' pf, to_list' n xs = cons x xs' ->
      from_list' x n xs' pf = xs.
Proof.
  induction n; intros.
  { simpl in *. injection H; clear H; intros; subst. congruence. }
  { destruct xs eqn:Hxs;
    destruct xs' eqn:Hxs';
    injection H; clear H; intros; subst; try discriminate.
    simpl. f_equal. eapply IHn. assumption. }
Qed.

Lemma from_list_to_list : forall {T n} (xs:tuple T n) pf, from_list n (to_list n xs) pf = xs.
Proof.
  destruct n; auto; intros; simpl in *.
  { destruct xs; auto. }
  { destruct (to_list' n xs) eqn:H; try discriminate.
    eapply from_list'_to_list'; assumption. }
Qed.

Definition on_tuple {A B} (f:list A -> list B)
           {n m:nat} (H:forall xs, length xs = n -> length (f xs) = m)
           (xs:tuple A n) : tuple B m :=
  from_list m (f (to_list n xs))
            (H (to_list n xs) (length_to_list xs)).

Definition on_tuple2 {A B C} (f : list A -> list B -> list C) {a b c : nat}
           (Hlength : forall la lb, length la = a -> length lb = b -> length (f la lb) = c)
           (ta:tuple A a) (tb:tuple B b) : tuple C c
  := from_list c (f (to_list a ta) (to_list b tb))
               (Hlength (to_list a ta) (to_list b tb) (length_to_list ta) (length_to_list tb)).

Fixpoint fieldwise' {A B} (n:nat) (R:A->B->Prop) (a:tuple' A n) (b:tuple' B n) {struct n} : Prop.
  destruct n; simpl @tuple' in *.
  { exact (R a b). }
  { exact (R (snd a) (snd b) /\ fieldwise' _ _ n R (fst a) (fst b)). }
Defined.

Definition fieldwise {A B} (n:nat) (R:A->B->Prop) (a:tuple A n) (b:tuple B n) : Prop.
  destruct n; simpl @tuple in *.
  { exact True. }
  { exact (fieldwise' _ R a b). }
Defined.

Global Instance Equivalence_fieldwise' {A} {R:relation A} {R_equiv:Equivalence R} {n:nat}:
    Equivalence (fieldwise' n R).
Proof.
  induction n as [|? IHn]; [solve [auto]|].
  (* could use [dintuition] in 8.5 only, and remove the [destruct] *)
  destruct IHn, R_equiv; simpl; constructor; repeat intro; intuition eauto.
Qed.

Global Instance Equivalence_fieldwise {A} {R:relation A} {R_equiv:Equivalence R} {n:nat}:
    Equivalence (fieldwise n R).
Proof.
  destruct n; (repeat constructor || apply Equivalence_fieldwise').
Qed.

Arguments fieldwise' {A B n} _ _ _.
Arguments fieldwise {A B n} _ _ _.

Local Hint Extern 0 => solve [ solve_decidable_transparent ] : typeclass_instances.
Global Instance dec_fieldwise' {A RA} {HA : DecidableRel RA} {n} : DecidableRel (@fieldwise' A A n RA) | 10.
Proof.
  induction n; simpl @fieldwise'.
  { exact _. }
  { intros ??.
    exact _. }
Qed.

Global Instance dec_fieldwise {A RA} {HA : DecidableRel RA} {n} : DecidableRel (@fieldwise A A n RA) | 10.
Proof.
  destruct n; unfold fieldwise; exact _.
Qed.

Fixpoint from_list_default' {T} (d y:T) (n:nat) (xs:list T) : tuple' T n :=
  match n return tuple' T n with
  | 0 => y (* ignore high digits *)
  | S n' =>
         match xs return _ with
         | cons x xs' => (from_list_default' d x n' xs', y)
         | nil => (from_list_default' d d n' nil, y)
         end
  end.

Definition from_list_default {T} d (n:nat) (xs:list T) : tuple T n :=
match n return tuple T n with
| 0 => tt
| S n' =>
    match xs return _ with
    | cons x xs' => (from_list_default' d x n' xs')
    | nil => (from_list_default' d d n' nil)
    end
end.

Lemma from_list_default'_eq : forall {T} (d : T) xs n y pf,
  from_list_default' d y n xs = from_list' y n xs pf.
Proof.
  induction xs; destruct n; intros; simpl in *;
    solve [ congruence (* 8.5 *)
          | erewrite IHxs; reflexivity ]. (* 8.4 *)
Qed.

Lemma from_list_default_eq : forall {T} (d : T) xs n pf,
  from_list_default d n xs = from_list n xs pf.
Proof.
  induction xs; destruct n; intros; try solve [simpl in *; congruence].
  apply from_list_default'_eq.
Qed.

Fixpoint function R T n : Type :=
  match n with
  | O => R
  | S n' => T -> function R T n'
  end.

Fixpoint apply' {R T} (n:nat) : (T -> function R T n) -> tuple' T n -> R :=
  match n with
  | 0 => id
  | S n' => fun f x => apply' n' (f (snd x)) (fst x)
  end.

Definition apply {R T} (n:nat) : function R T n -> tuple T n -> R :=
  match n with
  | O => fun r _ => r
  | S n' => fun f x =>  apply' n' f x
  end.