aboutsummaryrefslogtreecommitdiff
path: root/src/Util/Tuple.v
blob: aca78cd5a36bb77afc937c9a0d944e436df98396 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
Require Import Coq.Classes.Morphisms.
Require Import Coq.Relations.Relation_Definitions.
Require Import Coq.Lists.List.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Util.ListUtil.
Require Export Crypto.Util.FixCoqMistakes.

Fixpoint tuple' T n : Type :=
  match n with
  | O => T
  | S n' => (tuple' T n' * T)%type
  end.

Definition tuple T n : Type :=
  match n with
  | O => unit
  | S n' => tuple' T n'
  end.

Fixpoint to_list' {T} (n:nat) {struct n} : tuple' T n -> list T :=
  match n with
  | 0 => fun x => (x::nil)%list
  | S n' => fun xs : tuple' T (S n') => let (xs', x) := xs in (x :: to_list' n' xs')%list
  end.

Definition to_list {T} (n:nat) : tuple T n -> list T :=
  match n with
  | 0 => fun _ => nil
  | S n' => fun xs : tuple T (S n') => to_list' n' xs
  end.

Program Fixpoint from_list' {T} (y:T) (n:nat) (xs:list T) : length xs = n -> tuple' T n :=
  match n return _ with
  | 0 =>
    match xs return (length xs = 0 -> tuple' T 0) with
    | nil => fun _ => y
    | _ => _ (* impossible *)
    end
  | S n' =>
    match xs return (length xs = S n' -> tuple' T (S n')) with
    | cons x xs' => fun _ => (from_list' x n' xs' _, y)
    | _ => _ (* impossible *)
    end
  end.

Program Definition from_list {T} (n:nat) (xs:list T) : length xs = n -> tuple T n :=
match n return _ with
| 0 =>
    match xs return (length xs = 0 -> tuple T 0) with
    | nil => fun _ : 0 = 0 => tt
    | _ => _ (* impossible *)
    end
| S n' =>
    match xs return (length xs = S n' -> tuple T (S n')) with
    | cons x xs' => fun _ => from_list' x n' xs' _
    | _ => _ (* impossible *)
    end
end.

Lemma to_list_from_list : forall {T} (n:nat) (xs:list T) pf, to_list n (from_list n xs pf) = xs.
Proof.
  destruct xs; simpl; intros; subst; auto.
  generalize dependent t. simpl in *.
  induction xs; simpl in *; intros; congruence.
Qed.

Lemma length_to_list' T n t : length (@to_list' T n t) = S n.
Proof. induction n; simpl in *; trivial; destruct t; simpl; congruence. Qed.

Lemma length_to_list : forall {T} {n} (xs:tuple T n), length (to_list n xs) = n.
Proof.
  destruct n; [ reflexivity | apply length_to_list' ].
Qed.

Lemma from_list'_to_list' : forall T n (xs:tuple' T n),
    forall x xs' pf, to_list' n xs = cons x xs' ->
      from_list' x n xs' pf = xs.
Proof.
  induction n; intros.
  { simpl in *. injection H; clear H; intros; subst. congruence. }
  { destruct xs eqn:Hxs;
    destruct xs' eqn:Hxs';
    injection H; clear H; intros; subst; try discriminate.
    simpl. f_equal. eapply IHn. assumption. }
Qed.

Lemma from_list_to_list : forall {T n} (xs:tuple T n) pf, from_list n (to_list n xs) pf = xs.
Proof.
  destruct n; auto; intros; simpl in *.
  { destruct xs; auto. }
  { destruct (to_list' n xs) eqn:H; try discriminate.
    eapply from_list'_to_list'; assumption. }
Qed.

Fixpoint curry'T (R T : Type) (n : nat) : Type
  := match n with
     | 0 => T -> R
     | S n' => curry'T (T -> R) T n'
     end.
Definition curryT (R T : Type) (n : nat) : Type
  := match n with
     | 0 => R
     | S n' => curry'T R T n'
     end.

Fixpoint uncurry' {R T n} : (tuple' T n -> R) -> curry'T R T n
  := match n return (tuple' T n -> R) -> curry'T R T n with
     | 0 => fun f x => f x
     | S n' => fun f => @uncurry' (T -> R) T n' (fun xs x => f (xs, x))
     end.

Fixpoint uncurry {R T n} : (tuple T n -> R) -> curryT R T n
  := match n return (tuple T n -> R) -> curryT R T n with
     | 0 => fun f => f tt
     | S n' => @uncurry' R T n'
     end.

Fixpoint curry' {R T n} : curry'T R T n -> (tuple' T n -> R)
  := match n return curry'T R T n -> (tuple' T n -> R) with
     | 0 => fun f x => f x
     | S n' => fun f xs_x => @curry' (T -> R) T n' f (fst xs_x) (snd xs_x)
     end.

Fixpoint curry {R T n} : curryT R T n -> (tuple T n -> R)
  := match n return curryT R T n -> (tuple T n -> R) with
     | 0 => fun r _ => r
     | S n' => @curry' R T n'
     end.

Definition on_tuple {A B} (f:list A -> list B)
           {n m:nat} (H:forall xs, length xs = n -> length (f xs) = m)
           (xs:tuple A n) : tuple B m :=
  from_list m (f (to_list n xs))
            (H (to_list n xs) (length_to_list xs)).

Definition map {n A B} (f:A -> B) (xs:tuple A n) : tuple B n
  := on_tuple (List.map f) (fun _ => eq_trans (map_length _ _)) xs.

Lemma map_S {n A B} (f:A -> B) (xs:tuple' A n) (x:A)
  : map (n:=S (S n)) f (xs, x) = (map (n:=S n) f xs, f x).
Proof.
  unfold map, on_tuple.
  simpl @List.map.
Admitted.

Definition on_tuple2 {A B C} (f : list A -> list B -> list C) {a b c : nat}
           (Hlength : forall la lb, length la = a -> length lb = b -> length (f la lb) = c)
           (ta:tuple A a) (tb:tuple B b) : tuple C c
  := from_list c (f (to_list a ta) (to_list b tb))
               (Hlength (to_list a ta) (to_list b tb) (length_to_list ta) (length_to_list tb)).

Definition map2 {n A B C} (f:A -> B -> C) (xs:tuple A n) (ys:tuple B n) : tuple C n
  := on_tuple2 (map2 f) (fun la lb pfa pfb => eq_trans (@map2_length _ _ _ _ la lb) (eq_trans (f_equal2 _ pfa pfb) (Min.min_idempotent _))) xs ys.

Lemma map_map2 {n A B C D} (f:A -> B -> C) (g:C -> D) (xs:tuple A n) (ys:tuple B n)
  : map g (map2 f xs ys) = map2 (fun a b => g (f a b)) xs ys.
Proof.
Admitted.

Lemma map2_fst {n A B C} (f:A -> C) (xs:tuple A n) (ys:tuple B n)
  : map2 (fun a b => f a) xs ys = map f xs.
Proof.
Admitted.

Lemma map2_snd {n A B C} (f:B -> C) (xs:tuple A n) (ys:tuple B n)
  : map2 (fun a b => f b) xs ys = map f ys.
Proof.
Admitted.

Lemma map_id {n A} (xs:tuple A n)
  : map (fun x => x) xs = xs.
Proof.
Admitted.

Lemma map_id_ext {n A} (f : A -> A) (xs:tuple A n)
  : (forall x, f x = x) -> map f xs = xs.
Proof.
Admitted.

Section monad.
  Context (M : Type -> Type) (bind : forall X Y, M X -> (X -> M Y) -> M Y) (ret : forall X, X -> M X).
  Fixpoint lift_monad' {n A} {struct n}
    : tuple' (M A) n -> M (tuple' A n)
    := match n return tuple' (M A) n -> M (tuple' A n) with
       | 0 => fun t => t
       | S n' => fun xy => bind _ _ (@lift_monad' n' _ (fst xy)) (fun x' => bind _ _ (snd xy) (fun y' => ret _ (x', y')))
       end.
  Fixpoint push_monad' {n A} {struct n}
    : M (tuple' A n) -> tuple' (M A) n
    := match n return M (tuple' A n) -> tuple' (M A) n with
       | 0 => fun t => t
       | S n' => fun xy => (@push_monad' n' _ (bind _ _ xy (fun xy' => ret _ (fst xy'))),
                            bind _ _ xy (fun xy' => ret _ (snd xy')))
       end.
  Definition lift_monad {n A}
    : tuple (M A) n -> M (tuple A n)
    := match n return tuple (M A) n -> M (tuple A n) with
       | 0 => ret _
       | S n' => @lift_monad' n' A
       end.
  Definition push_monad {n A}
    : M (tuple A n) -> tuple (M A) n
    := match n return M (tuple A n) -> tuple (M A) n with
       | 0 => fun _ => tt
       | S n' => @push_monad' n' A
       end.
End monad.
Local Notation option_bind
  := (fun A B (x : option A) f => match x with
                                  | Some x' => f x'
                                  | None => None
                                  end).
Definition lift_option {n A} (xs : tuple (option A) n) : option (tuple A n)
  := lift_monad option option_bind (@Some) xs.
Definition push_option {n A} (xs : option (tuple A n)) : tuple (option A) n
  := push_monad option option_bind (@Some) xs.

Lemma lift_push_option {n A} (xs : option (tuple A (S n))) : lift_option (push_option xs) = xs.
Proof.
  simpl in *.
  induction n; [ reflexivity | ].
  simpl in *; rewrite IHn; clear IHn.
  destruct xs as [ [? ?] | ]; reflexivity.
Qed.

Fixpoint fieldwise' {A B} (n:nat) (R:A->B->Prop) (a:tuple' A n) (b:tuple' B n) {struct n} : Prop.
  destruct n; simpl @tuple' in *.
  { exact (R a b). }
  { exact (R (snd a) (snd b) /\ fieldwise' _ _ n R (fst a) (fst b)). }
Defined.

Definition fieldwise {A B} (n:nat) (R:A->B->Prop) (a:tuple A n) (b:tuple B n) : Prop.
  destruct n; simpl @tuple in *.
  { exact True. }
  { exact (fieldwise' _ R a b). }
Defined.

Local Ltac Equivalence_fieldwise'_t :=
  let n := match goal with |- ?R (fieldwise' ?n _) => n end in
  let IHn := fresh in
  (* could use [dintuition] in 8.5 only, and remove the [destruct] *)
  repeat match goal with
         | [ H : Equivalence _ |- _ ] => destruct H
         | [ |- Equivalence _ ] => constructor
         end;
  induction n as [|? IHn]; [solve [auto]|];
  simpl; constructor; repeat intro; repeat intuition eauto.

Section Equivalence.
  Context {A} {R:relation A}.
  Global Instance Reflexive_fieldwise' {R_Reflexive:Reflexive R} {n:nat} : Reflexive (fieldwise' n R) | 5.
  Proof. Equivalence_fieldwise'_t. Qed.
  Global Instance Symmetric_fieldwise' {R_Symmetric:Symmetric R} {n:nat} : Symmetric (fieldwise' n R) | 5.
  Proof. Equivalence_fieldwise'_t. Qed.
  Global Instance Transitive_fieldwise' {R_Transitive:Transitive R} {n:nat} : Transitive (fieldwise' n R) | 5.
  Proof. Equivalence_fieldwise'_t. Qed.
  Global Instance Equivalence_fieldwise' {R_equiv:Equivalence R} {n:nat} : Equivalence (fieldwise' n R).
  Proof. constructor; exact _. Qed.

  Global Instance Reflexive_fieldwise {R_Reflexive:Reflexive R} {n:nat} : Reflexive (fieldwise n R) | 5.
  Proof. destruct n; (repeat constructor || exact _). Qed.
  Global Instance Symmetric_fieldwise {R_Symmetric:Symmetric R} {n:nat} : Symmetric (fieldwise n R) | 5.
  Proof. destruct n; (repeat constructor || exact _). Qed.
  Global Instance Transitive_fieldwise {R_Transitive:Transitive R} {n:nat} : Transitive (fieldwise n R) | 5.
  Proof. destruct n; (repeat constructor || exact _). Qed.
  Global Instance Equivalence_fieldwise {R_equiv:Equivalence R} {n:nat} : Equivalence (fieldwise n R).
  Proof. constructor; exact _. Qed.
End Equivalence.

Arguments fieldwise' {A B n} _ _ _.
Arguments fieldwise {A B n} _ _ _.

Local Hint Extern 0 => solve [ solve_decidable_transparent ] : typeclass_instances.
Global Instance dec_fieldwise' {A RA} {HA : DecidableRel RA} {n} : DecidableRel (@fieldwise' A A n RA) | 10.
Proof.
  induction n; simpl @fieldwise'.
  { exact _. }
  { intros ??.
    exact _. }
Defined.

Global Instance dec_fieldwise {A RA} {HA : DecidableRel RA} {n} : DecidableRel (@fieldwise A A n RA) | 10.
Proof.
  destruct n; unfold fieldwise; exact _.
Defined.

Fixpoint fieldwiseb' {A B} (n:nat) (R:A->B->bool) (a:tuple' A n) (b:tuple' B n) {struct n} : bool.
  destruct n; simpl @tuple' in *.
  { exact (R a b). }
  { exact (R (snd a) (snd b) && fieldwiseb' _ _ n R (fst a) (fst b))%bool. }
Defined.

Definition fieldwiseb {A B} (n:nat) (R:A->B->bool) (a:tuple A n) (b:tuple B n) : bool.
  destruct n; simpl @tuple in *.
  { exact true. }
  { exact (fieldwiseb' _ R a b). }
Defined.

Arguments fieldwiseb' {A B n} _ _ _.
Arguments fieldwiseb {A B n} _ _ _.

Lemma fieldwiseb'_fieldwise' :forall {A B} n R Rb
                                   (a:tuple' A n) (b:tuple' B n),
  (forall a b, Rb a b = true <-> R a b) ->
  (fieldwiseb' Rb a b = true <-> fieldwise' R a b).
Proof.
  intros.
  revert n a b;
  induction n; intros; simpl @tuple' in *;
    simpl fieldwiseb'; simpl fieldwise'; auto.
  cbv beta.
  rewrite Bool.andb_true_iff.
  f_equiv; auto.
Qed.

Lemma fieldwiseb_fieldwise :forall {A B} n R Rb
                                   (a:tuple A n) (b:tuple B n),
  (forall a b, Rb a b = true <-> R a b) ->
  (fieldwiseb Rb a b = true <-> fieldwise R a b).
Proof.
  intros; destruct n; simpl @tuple in *;
    simpl @fieldwiseb; simpl @fieldwise; try tauto.
  auto using fieldwiseb'_fieldwise'.
Qed.


Fixpoint from_list_default' {T} (d y:T) (n:nat) (xs:list T) : tuple' T n :=
  match n return tuple' T n with
  | 0 => y (* ignore high digits *)
  | S n' =>
         match xs return _ with
         | cons x xs' => (from_list_default' d x n' xs', y)
         | nil => (from_list_default' d d n' nil, y)
         end
  end.

Definition from_list_default {T} d (n:nat) (xs:list T) : tuple T n :=
match n return tuple T n with
| 0 => tt
| S n' =>
    match xs return _ with
    | cons x xs' => (from_list_default' d x n' xs')
    | nil => (from_list_default' d d n' nil)
    end
end.

Lemma from_list_default'_eq : forall {T} (d : T) xs n y pf,
  from_list_default' d y n xs = from_list' y n xs pf.
Proof.
  induction xs; destruct n; intros; simpl in *;
    solve [ congruence (* 8.5 *)
          | erewrite IHxs; reflexivity ]. (* 8.4 *)
Qed.

Lemma from_list_default_eq : forall {T} (d : T) xs n pf,
  from_list_default d n xs = from_list n xs pf.
Proof.
  induction xs; destruct n; intros; try solve [simpl in *; congruence].
  apply from_list_default'_eq.
Qed.

Fixpoint function R T n : Type :=
  match n with
  | O => R
  | S n' => T -> function R T n'
  end.

Fixpoint apply' {R T} (n:nat) : (T -> function R T n) -> tuple' T n -> R :=
  match n with
  | 0 => id
  | S n' => fun f x => apply' n' (f (snd x)) (fst x)
  end.

Definition apply {R T} (n:nat) : function R T n -> tuple T n -> R :=
  match n with
  | O => fun r _ => r
  | S n' => fun f x =>  apply' n' f x
  end.

Require Import Coq.Lists.SetoidList.

Lemma fieldwise_to_list_iff : forall {T n} R (s t : tuple T n),
    (fieldwise R s t <-> Forall2 R (to_list _ s) (to_list _ t)).
Proof.
  induction n; split; intros.
  + constructor.
  + cbv [fieldwise]. auto.
  + destruct n; cbv [tuple to_list fieldwise] in *.
    - cbv [to_list']; auto.
    - simpl in *. destruct s,t; cbv [fst snd] in *.
      constructor; intuition auto.
      apply IHn; auto.
  + destruct n; cbv [tuple to_list fieldwise] in *.
    - cbv [fieldwise']; auto.
      cbv [to_list'] in *; inversion H; auto.
    - simpl in *. destruct s,t; cbv [fst snd] in *.
      inversion H; subst.
      split; try assumption.
      apply IHn; auto.
Qed.


Require Import Crypto.Util.ListUtil. (* To initialize [distr_length] database *)
Hint Rewrite length_to_list' @length_to_list : distr_length.