aboutsummaryrefslogtreecommitdiff
path: root/src/Util/Sigma.v
blob: f0016dc739816877ec10d7952d85625ea5afc50f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.GlobalSettings.

Local Arguments projT1 {_ _} _.
Local Arguments projT2 {_ _} _.
Local Arguments proj1_sig {_ _} _.
Local Arguments proj1_sig {_ _} _.
Local Arguments f_equal {_ _} _ {_ _} _.

Section sigT.
  Definition pr1_path {A} {P : A -> Type} {u v : sigT P} (p : u = v)
  : projT1 u = projT1 v
    := f_equal (@projT1 _ _) p.

  Definition pr2_path {A} {P : A -> Type} {u v : sigT P} (p : u = v)
  : eq_rect _ _ (projT2 u) _ (pr1_path p) = projT2 v.
  Proof.
    destruct p; reflexivity.
  Defined.

  Definition path_sigT_uncurried {A : Type} {P : A -> Type} (u v : sigT P)
             (pq : sigT (fun p : projT1 u = projT1 v => eq_rect _ _ (projT2 u) _ p = projT2 v))
  : u = v.
  Proof.
    destruct u as [u1 u2], v as [v1 v2]; simpl in *.
    destruct pq as [p q].
    destruct q; simpl in *.
    destruct p; reflexivity.
  Defined.

  Definition path_sigT {A : Type} {P : A -> Type} (u v : sigT P)
             (p : projT1 u = projT1 v) (q : eq_rect _ _ (projT2 u) _ p = projT2 v)
  : u = v
    := path_sigT_uncurried u v (existT _ p q).

  Definition path_sigT_hprop {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : @sigT A P)
             (p : projT1 u = projT1 v)
    : u = v
    := path_sigT u v p (P_hprop _ _ _).

  Definition path_sigT_uncurried_iff {A P}
             (u v : @sigT A P)
    : u = v <-> (sigT (fun p : projT1 u = projT1 v => eq_rect _ _ (projT2 u) _ p = projT2 v)).
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply path_sigT_uncurried ].
  Defined.

  Definition path_sigT_hprop_iff {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : @sigT A P)
    : u = v <-> (projT1 u = projT1 v)
    := conj (f_equal projT1) (path_sigT_hprop P_hprop u v).

  Definition path_sigT_nondep {A B : Type} (u v : @sigT A (fun _ => B))
             (p : projT1 u = projT1 v) (q : projT2 u = projT2 v)
  : u = v
    := @path_sigT _ _ u v p (eq_trans (transport_const _ _) q).

  Lemma eq_rect_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : sigT (Q x)) {y} (H : x = y)
  : eq_rect x (fun a => sigT (Q a)) u y H
    = existT
        (Q y)
        (eq_rect x P (projT1 u) y H)
        match H in (_ = y) return Q y (eq_rect x P (projT1 u) y H) with
          | eq_refl => projT2 u
        end.
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sigT.

Section sig.
  Definition proj1_sig_path {A} {P : A -> Prop} {u v : sig P} (p : u = v)
  : proj1_sig u = proj1_sig v
    := f_equal (@proj1_sig _ _) p.

  Definition proj2_sig_path {A} {P : A -> Prop} {u v : sig P} (p : u = v)
  : eq_rect _ _ (proj2_sig u) _ (proj1_sig_path p) = proj2_sig v.
  Proof.
    destruct p; reflexivity.
  Defined.

  Definition path_sig_uncurried {A : Type} {P : A -> Prop} (u v : sig P)
             (pq : {p : proj1_sig u = proj1_sig v | eq_rect _ _ (proj2_sig u) _ p = proj2_sig v})
  : u = v.
  Proof.
    destruct u as [u1 u2], v as [v1 v2]; simpl in *.
    destruct pq as [p q].
    destruct q; simpl in *.
    destruct p; reflexivity.
  Defined.

  Definition path_sig {A : Type} {P : A -> Prop} (u v : sig P)
             (p : proj1_sig u = proj1_sig v) (q : eq_rect _ _ (proj2_sig u) _ p = proj2_sig v)
  : u = v
    := path_sig_uncurried u v (exist _ p q).

  Definition path_sig_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : @sig A P)
             (p : proj1_sig u = proj1_sig v)
    : u = v
    := path_sig u v p (P_hprop _ _ _).

  Definition path_sig_uncurried_iff {A} {P : A -> Prop}
             (u v : @sig A P)
    : u = v <-> (sig (fun p : proj1_sig u = proj1_sig v => eq_rect _ _ (proj2_sig u) _ p = proj2_sig v)).
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply path_sig_uncurried ].
  Defined.

  Definition path_sig_hprop_iff {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : @sig A P)
    : u = v <-> (proj1_sig u = proj1_sig v)
    := conj (f_equal proj1_sig) (path_sig_hprop P_hprop u v).

  Lemma eq_rect_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : sig (Q x)) {y} (H : x = y)
  : eq_rect x (fun a => sig (Q a)) u y H
    = exist
        (Q y)
        (eq_rect x P (proj1_sig u) y H)
        match H in (_ = y) return Q y (eq_rect x P (proj1_sig u) y H) with
          | eq_refl => proj2_sig u
        end.
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sig.

Section ex.
  Definition path_ex_uncurried' {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (pq : exists p : u1 = v1, eq_rect _ _ u2 _ p = v2)
  : ex_intro P u1 u2 = ex_intro P v1 v2.
  Proof.
    destruct pq as [p q].
    destruct q; simpl in *.
    destruct p; reflexivity.
  Defined.

  Definition path_ex' {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1)
             (p : u1 = v1) (q : eq_rect _ _ u2 _ p = v2)
  : ex_intro P u1 u2 = ex_intro P v1 v2
    := path_ex_uncurried' P (ex_intro _ p q).

  Definition path_ex'_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u1 v1 : A) (u2 : P u1) (v2 : P v1)
             (p : u1 = v1)
    : ex_intro P u1 u2 = ex_intro P v1 v2
    := path_ex' u1 v1 u2 v2 p (P_hprop _ _ _).

  Lemma eq_rect_ex {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : ex (Q x)) {y} (H : x = y)
  : eq_rect x (fun a => ex (Q a)) u y H
    = match u with
        | ex_intro u1 u2
          => ex_intro
               (Q y)
               (eq_rect x P u1 y H)
               match H in (_ = y) return Q y (eq_rect x P u1 y H) with
                 | eq_refl => u2
               end
      end.
  Proof.
    destruct H, u; reflexivity.
  Defined.
End ex.

Ltac simpl_proj_exist_in H :=
  repeat match type of H with
         | context G[proj1_sig (exist _ ?x ?p)]
           => let G' := context G[x] in change G' in H
         | context G[proj2_sig (exist _ ?x ?p)]
           => let G' := context G[p] in change G' in H
         | context G[projT1 (existT _ ?x ?p)]
           => let G' := context G[x] in change G' in H
         | context G[projT2 (existT _ ?x ?p)]
           => let G' := context G[p] in change G' in H
         end.
Ltac inversion_sigma_step :=
  match goal with
  | [ H : exist _ _ _ = exist _ _ _ |- _ ]
    => apply path_sig_uncurried_iff in H; simpl_proj_exist_in H; destruct H
  | [ H : existT _ _ _ = existT _ _ _ |- _ ]
    => apply path_sigT_uncurried_iff in H; simpl_proj_exist_in H; destruct H
  end.
Ltac inversion_sigma := repeat inversion_sigma_step.