aboutsummaryrefslogtreecommitdiff
path: root/src/Util/NatUtil.v
blob: d1e7bbd41ec1b614dfd12c0da0df880ede13a24c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Require Import Coq.Numbers.Natural.Peano.NPeano Coq.omega.Omega.
Require Import Coq.micromega.Psatz.
Import Nat.

Local Open Scope nat_scope.

Lemma min_def {x y} : min x y = x - (x - y).
Proof. apply Min.min_case_strong; omega. Qed.
Lemma max_def {x y} : max x y = x + (y - x).
Proof. apply Max.max_case_strong; omega. Qed.
Ltac coq_omega := omega.
Ltac handle_min_max_for_omega :=
  repeat match goal with
         | [ H : context[min _ _] |- _ ] => rewrite !min_def in H
         | [ H : context[max _ _] |- _ ] => rewrite !max_def in H
         | [ |- context[min _ _] ] => rewrite !min_def
         | [ |- context[max _ _] ] => rewrite !max_def
         end.
Ltac handle_min_max_for_omega_case :=
  repeat match goal with
         | [ H : context[min _ _] |- _ ] => revert H
         | [ H : context[max _ _] |- _ ] => revert H
         | [ |- context[min _ _] ] => apply Min.min_case_strong
         | [ |- context[max _ _] ] => apply Max.max_case_strong
         end;
  intros.
Ltac omega_with_min_max :=
  handle_min_max_for_omega;
  omega.
Ltac omega_with_min_max_case :=
  handle_min_max_for_omega_case;
  omega.
Tactic Notation "omega" := coq_omega.
Tactic Notation "omega" "*" := omega_with_min_max_case.
Tactic Notation "omega" "**" := omega_with_min_max.

Lemma div_minus : forall a b, b <> 0 -> (a + b) / b = a / b + 1.
Proof.
  intros.
  assert (b = 1 * b) by omega.
  rewrite H0 at 1.
  rewrite <- Nat.div_add by auto.
  reflexivity.
Qed.

Lemma divide2_1mod4_nat : forall c x, c = x / 4 -> x mod 4 = 1 -> exists y, 2 * y = (x / 2).
Proof.
  assert (4 <> 0) as ne40 by omega.
  induction c; intros; pose proof (div_mod x 4 ne40); rewrite <- H in H1. {
    rewrite H0 in H1.
    simpl in H1.
    rewrite H1.
    exists 0; auto.
  } {
    rewrite mult_succ_r in H1.
    assert (4 <= x) as le4x by (apply Nat.div_str_pos_iff; omega).
    rewrite <- Nat.add_1_r in H.
    replace x with ((x - 4) + 4) in H by omega.
    rewrite div_minus in H by auto.
    apply Nat.add_cancel_r in H.
    replace x with ((x - 4) + (1 * 4)) in H0 by omega.
    rewrite Nat.mod_add in H0 by auto.
    pose proof (IHc _ H H0).
    destruct H2.
    exists (x0 + 1).
    rewrite <- (Nat.sub_add 4 x) in H1 at 1 by auto.
    replace (4 * c + 4 + x mod 4) with (4 * c + x mod 4 + 4) in H1 by omega.
    apply Nat.add_cancel_r in H1.
    replace (2 * (x0 + 1)) with (2 * x0 + 2)
      by (rewrite Nat.mul_add_distr_l; auto).
    rewrite H2.
    rewrite <- Nat.div_add by omega.
    f_equal.
    simpl.
    apply Nat.sub_add; auto.
  }
Qed.

Lemma Nat2N_inj_lt : forall n m, (N.of_nat n < N.of_nat m)%N <-> n < m.
Proof.
  split; intros. {
    rewrite nat_compare_lt.
    rewrite Nnat.Nat2N.inj_compare.
    rewrite N.compare_lt_iff; auto.
  } {
    rewrite <- N.compare_lt_iff.
    rewrite <- Nnat.Nat2N.inj_compare.
    rewrite <- nat_compare_lt; auto.
  }
Qed.

Lemma lt_min_l : forall x a b, (x < min a b)%nat -> (x < a)%nat.
Proof.
  intros ? ? ? lt_min.
  apply Nat.min_glb_lt_iff in lt_min.
  destruct lt_min; assumption.
Qed.

(* useful for hints *)
Lemma eq_le_incl_rev : forall a b, a = b -> b <= a.
Proof.
  intros; omega.
Qed.

Lemma beq_nat_eq_nat_dec {R} (x y : nat) (a b : R)
  : (if EqNat.beq_nat x y then a else b) = (if eq_nat_dec x y then a else b).
Proof.
  destruct (eq_nat_dec x y) as [H|H];
    [ rewrite (proj2 (@beq_nat_true_iff _ _) H); reflexivity
    | rewrite (proj2 (@beq_nat_false_iff _ _) H); reflexivity ].
Qed.

Lemma pow_nonzero a k : a <> 0 -> a ^ k <> 0.
Proof.
  intro; induction k; simpl; nia.
Qed.

Hint Resolve pow_nonzero : arith.