aboutsummaryrefslogtreecommitdiff
path: root/src/Util/NatUtil.v
blob: 83375f99acff90e0bc61938ea3a408fc02729b67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
Require Coq.Logic.Eqdep_dec.
Require Import Coq.Numbers.Natural.Peano.NPeano Coq.omega.Omega.
Require Import Coq.micromega.Psatz.
Import Nat.

Create HintDb natsimplify discriminated.

Hint Resolve mod_bound_pos : arith.
Hint Resolve (fun x y p q => proj1 (@Nat.mod_bound_pos x y p q)) (fun x y p q => proj2 (@Nat.mod_bound_pos x y p q)) : arith.

Hint Rewrite @mod_small @mod_mod @mod_1_l @mod_1_r succ_pred using omega : natsimplify.

Local Open Scope nat_scope.

Lemma min_def {x y} : min x y = x - (x - y).
Proof. apply Min.min_case_strong; omega. Qed.
Lemma max_def {x y} : max x y = x + (y - x).
Proof. apply Max.max_case_strong; omega. Qed.
Ltac coq_omega := omega.
Ltac handle_min_max_for_omega_gen min max :=
  repeat match goal with
         | [ H : context[min _ _] |- _ ] => rewrite !min_def in H || setoid_rewrite min_def in H
         | [ H : context[max _ _] |- _ ] => rewrite !max_def in H || setoid_rewrite max_def in H
         | [ |- context[min _ _] ] => rewrite !min_def || setoid_rewrite min_def
         | [ |- context[max _ _] ] => rewrite !max_def || setoid_rewrite max_def
         end.
Ltac handle_min_max_for_omega_case_gen min max :=
  repeat match goal with
         | [ H : context[min _ _] |- _ ] => revert H
         | [ H : context[max _ _] |- _ ] => revert H
         | [ |- context[min _ _] ] => apply Min.min_case_strong
         | [ |- context[max _ _] ] => apply Max.max_case_strong
         end;
  intros.
Ltac handle_min_max_for_omega := handle_min_max_for_omega_gen min max.
Ltac handle_min_max_for_omega_case := handle_min_max_for_omega_case_gen min max.
(* In 8.4, Nat.min is a definition, so we need to unfold it *)
Ltac handle_min_max_for_omega_compat_84 :=
  let min := (eval cbv [min] in min) in
  let max := (eval cbv [max] in max) in
  handle_min_max_for_omega_gen min max.
Ltac handle_min_max_for_omega_case_compat_84 :=
  let min := (eval cbv [min] in min) in
  let max := (eval cbv [max] in max) in
  handle_min_max_for_omega_case_gen min max.
Ltac omega_with_min_max :=
  handle_min_max_for_omega;
  try handle_min_max_for_omega_compat_84;
  omega.
Ltac omega_with_min_max_case :=
  handle_min_max_for_omega_case;
  try handle_min_max_for_omega_case_compat_84;
  omega.
Tactic Notation "omega" := coq_omega.
Tactic Notation "omega" "*" := omega_with_min_max_case.
Tactic Notation "omega" "**" := omega_with_min_max.

Lemma div_minus : forall a b, b <> 0 -> (a + b) / b = a / b + 1.
Proof.
  intros.
  assert (b = 1 * b) by omega.
  rewrite H0 at 1.
  rewrite <- Nat.div_add by auto.
  reflexivity.
Qed.

Lemma divide2_1mod4_nat : forall c x, c = x / 4 -> x mod 4 = 1 -> exists y, 2 * y = (x / 2).
Proof.
  assert (4 <> 0) as ne40 by omega.
  induction c; intros; pose proof (div_mod x 4 ne40); rewrite <- H in H1. {
    rewrite H0 in H1.
    simpl in H1.
    rewrite H1.
    exists 0; auto.
  } {
    rewrite mult_succ_r in H1.
    assert (4 <= x) as le4x by (apply Nat.div_str_pos_iff; omega).
    rewrite <- Nat.add_1_r in H.
    replace x with ((x - 4) + 4) in H by omega.
    rewrite div_minus in H by auto.
    apply Nat.add_cancel_r in H.
    replace x with ((x - 4) + (1 * 4)) in H0 by omega.
    rewrite Nat.mod_add in H0 by auto.
    pose proof (IHc _ H H0).
    destruct H2.
    exists (x0 + 1).
    rewrite <- (Nat.sub_add 4 x) in H1 at 1 by auto.
    replace (4 * c + 4 + x mod 4) with (4 * c + x mod 4 + 4) in H1 by omega.
    apply Nat.add_cancel_r in H1.
    replace (2 * (x0 + 1)) with (2 * x0 + 2)
      by (rewrite Nat.mul_add_distr_l; auto).
    rewrite H2.
    rewrite <- Nat.div_add by omega.
    f_equal.
    simpl.
    apply Nat.sub_add; auto.
  }
Qed.

Lemma Nat2N_inj_lt : forall n m, (N.of_nat n < N.of_nat m)%N <-> n < m.
Proof.
  split; intros. {
    rewrite nat_compare_lt.
    rewrite Nnat.Nat2N.inj_compare.
    rewrite N.compare_lt_iff; auto.
  } {
    rewrite <- N.compare_lt_iff.
    rewrite <- Nnat.Nat2N.inj_compare.
    rewrite <- nat_compare_lt; auto.
  }
Qed.

Lemma lt_min_l : forall x a b, (x < min a b)%nat -> (x < a)%nat.
Proof.
  intros ? ? ? lt_min.
  apply Nat.min_glb_lt_iff in lt_min.
  destruct lt_min; assumption.
Qed.

(* useful for hints *)
Lemma eq_le_incl_rev : forall a b, a = b -> b <= a.
Proof.
  intros; omega.
Qed.

Lemma beq_nat_eq_nat_dec {R} (x y : nat) (a b : R)
  : (if EqNat.beq_nat x y then a else b) = (if eq_nat_dec x y then a else b).
Proof.
  destruct (eq_nat_dec x y) as [H|H];
    [ rewrite (proj2 (@beq_nat_true_iff _ _) H); reflexivity
    | rewrite (proj2 (@beq_nat_false_iff _ _) H); reflexivity ].
Qed.

Lemma pow_nonzero a k : a <> 0 -> a ^ k <> 0.
Proof.
  intro; induction k; simpl; nia.
Qed.

Hint Resolve pow_nonzero : arith.

Lemma S_pred_nonzero : forall a, (a > 0 -> S (pred a) = a)%nat.
Proof.
  destruct a; simpl; omega.
Qed.

Hint Rewrite S_pred_nonzero using omega : natsimplify.

Lemma mod_same_eq a b : a <> 0 -> a = b -> b mod a = 0.
Proof. intros; subst; apply mod_same; assumption. Qed.

Hint Rewrite @mod_same_eq using omega : natsimplify.
Hint Resolve mod_same_eq : arith.

Lemma mod_mod_eq a b c : a <> 0 -> b = c mod a -> b mod a = b.
Proof. intros; subst; autorewrite with natsimplify; reflexivity. Qed.

Hint Rewrite @mod_mod_eq using (reflexivity || omega) : natsimplify.

Local Arguments minus !_ !_.

Lemma S_mod_full a b : a <> 0 -> (S b) mod a = if eq_nat_dec (S (b mod a)) a
                                               then 0
                                               else S (b mod a).
Proof.
  change (S b) with (1+b); intros.
  pose proof (mod_bound_pos b a).
  rewrite add_mod by assumption.
  destruct (eq_nat_dec (S (b mod a)) a) as [H'|H'];
    destruct a as [|[|a]]; autorewrite with natsimplify in *;
      try congruence; try reflexivity.
Qed.

Hint Rewrite S_mod_full using omega : natsimplify.

Lemma S_mod a b : a <> 0 -> S (b mod a) <> a -> (S b) mod a = S (b mod a).
Proof.
  intros; rewrite S_mod_full by assumption.
  edestruct eq_nat_dec; omega.
Qed.

Hint Rewrite S_mod using (omega || autorewrite with natsimplify; omega) : natsimplify.

Lemma eq_nat_dec_refl x : eq_nat_dec x x = left (Logic.eq_refl x).
Proof.
  edestruct eq_nat_dec; try congruence.
  apply f_equal, Eqdep_dec.UIP_dec, eq_nat_dec.
Qed.

Hint Rewrite eq_nat_dec_refl : natsimplify.