aboutsummaryrefslogtreecommitdiff
path: root/src/Util/Loops.v
blob: 56b27dac795762b724782840b60f4a1bd60f8963 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
Require Import Coq.Lists.List.
Require Import Lia. 
Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.LetIn.

Require Import Crypto.Util.CPSNotations.

Module Import core.
  Section Loops.
    Context {A B : Type} (body : A -> A + B).

    (* the fuel parameter is only present to allow defining a loop
    without proving its termination. The loop body does not have
    access to the amount of remaining fuel, and thus increasing fuel
    beyond termination cannot change the behavior. fuel counts full
    loops -- the one that exacutes "break" is not included *)

    Fixpoint loop (fuel : nat) (s : A) {struct fuel} : A + B :=
      let s := body s in
      match s with
      | inl a =>
        match fuel with
        | O => inl a
        | S fuel' => loop fuel' a
        end 
      | inr b => inr b
      end.

    Context (body_cps : A ~> A + B).

    Fixpoint loop_cps (fuel : nat) (s : A) {struct fuel} :~> A + B :=
      s <- body_cps s;
        match s with
        | inl a => 
          match fuel with
          | O => return (inl a)
          | S fuel' => loop_cps fuel' a
          end
        | inr b => return (inr b)
        end.

    Context (body_cps_ok : forall s {R} f, body_cps s R f = f (body s)).
    Lemma loop_cps_ok n s {R} f : loop_cps n s R f = f (loop n s).
    Proof.
      revert f; revert R; revert s; induction n;
        repeat match goal with
               | _ => progress intros
               | _ => progress cbv [cpsreturn cpscall] in *
               | _ => progress cbn
               | _ => progress rewrite ?body_cps_ok
               | _ => progress rewrite ?IHn
               | _ => progress break_match
               | _ => reflexivity
               end.
    Qed.

    Context (body_cps2 : A -> forall {R}, (A -> R) -> (B -> R) -> R).
    Fixpoint loop_cps2 (fuel : nat) (s : A) {R} (timeout:A->R) (ret:B->R) {struct fuel} : R :=
      body_cps2 s R
                (fun a =>
                   match fuel with
                   | O => timeout a
                   | S fuel' => @loop_cps2 fuel' a R timeout ret
                   end)
                (fun b => ret b).

    Context (body_cps2_ok : forall s {R} continue break,
                body_cps2 s R continue break =
                match body s with
                | inl a => continue a
                | inr b => break b
                end).
    Lemma loop_cps2_ok n s {R} (timeout ret : _ -> R) :
      @loop_cps2 n s R timeout ret =
      match loop n s with
      | inl a => timeout a
      | inr b => ret b
      end.
    Proof.
      revert timeout; revert ret; revert R; revert s; induction n;
        repeat match goal with
               | _ => progress intros
               | _ => progress cbv [cpsreturn cpscall] in *
               | _ => progress cbn
               | _ => progress rewrite ?body_cps2_ok
               | _ => progress rewrite ?IHn
               | _ => progress inversion_sum
               | _ => progress subst
               | _ => progress break_match
               | _ => reflexivity
               end.
    Qed.

    Local Lemma loop_fuel_0 s : loop 0 s = body s.
    Proof. cbv; break_match; reflexivity. Qed.

    Local Lemma loop_fuel_S_first n s : loop (S n) s =
                                  match body s with
                                  | inl a => loop n a
                                  | inr b => inr b
                                  end.
    Proof. reflexivity. Qed.

    Local Lemma loop_fuel_S_last n s : loop (S n) s =
                                 match loop n s with
                                 | inl a => body a
                                 | inr b => loop n s
                                 end.
    Proof.
      revert s; induction n; cbn; intros s.
      { break_match; reflexivity. }
      { destruct (body s); cbn; rewrite <-?IHn; reflexivity. }
    Qed.

    Local Lemma loop_fuel_S_stable n s b (H : loop n s = inr b) : loop (S n) s = inr b.
    Proof.
      revert H; revert b; revert s; induction n; intros ? ? H.
      { cbn [loop nat_rect] in *; break_match_hyps; congruence_sum; congruence. }
      { rewrite loop_fuel_S_last.
        break_match; congruence_sum; reflexivity. }
    Qed.

    Local Lemma loop_fuel_add_stable n m s b (H : loop n s = inr b) : loop (m+n) s = inr b.
    Proof.
      induction m; intros.
      { rewrite PeanoNat.Nat.add_0_l. assumption. }
      { rewrite PeanoNat.Nat.add_succ_l.
        erewrite loop_fuel_S_stable; eauto. }
    Qed.

    Lemma loop_fuel_irrelevant n m s bn bm
          (Hn : loop n s = inr bn)
          (Hm : loop m s = inr bm)
      : bn = bm.
    Proof.
      destruct (Compare_dec.le_le_S_dec n m) as [H|H];
        destruct (PeanoNat.Nat.le_exists_sub _ _ H) as [d [? _]]; subst.
      { erewrite loop_fuel_add_stable in Hm by eassumption; congruence. }
      { erewrite loop_fuel_add_stable in Hn.
        { congruence_sum. reflexivity. }
        { erewrite loop_fuel_S_stable by eassumption. congruence. } }
    Qed.

    Local Lemma by_invariant_fuel' (inv:_->Prop) measure P f s0
          (init : inv s0 /\ measure s0 <= f)
          (step : forall s, inv s -> match body s with
                                     | inl s' => inv s' /\ measure s' < measure s
                                     | inr s' => P s'
                                     end)
      : match loop f s0 with
        | inl a => False
        | inr s => P s
        end.
    Proof.
      revert dependent s0; induction f; intros; destruct_head'_and.
      { specialize (step s0 H); cbv; break_innermost_match; [lia|assumption]. }
      { rewrite loop_fuel_S_first.
        specialize (step s0 H); destruct (body s0); [|assumption].
        destruct step.
        exact (IHf a ltac:(split; (assumption || lia))). }
    Qed.

    Lemma by_invariant_fuel (inv:_->Prop) measure P f s0
          (init : inv s0 /\ measure s0 <= f)
          (step : forall s, inv s -> match body s with
                                     | inl s' => inv s' /\ measure s' < measure s
                                     | inr s' => P s'
                                     end)
      : exists b, loop f s0 = inr b /\ P b.
    Proof.
      pose proof (by_invariant_fuel' inv measure P f s0);
        specialize_by assumption; break_match_hyps; [contradiction|eauto].
    Qed.

    Lemma by_invariant (inv:_->Prop) measure P s0
          (init : inv s0)
          (step : forall s, inv s -> match body s with
                                     | inl s' => inv s' /\ measure s' < measure s
                                     | inr s' => P s'
                                     end)
      : exists b, loop (measure s0) s0 = inr b /\ P b.
    Proof. eapply by_invariant_fuel; eauto. Qed.

    (* Completeness proof *)

    Definition iterations_required fuel s : option nat :=
      nat_rect _ None
               (fun n r =>
                  match r with
                  | Some _ => r
                  | None =>
                    match loop n s with
                    | inl a => None
                    | inr b => Some n
                    end
                  end
               ) fuel.

    Lemma iterations_required_correct fuel s :
      (forall m, iterations_required fuel s = Some m ->
                 m < fuel /\
                 exists b, forall n, (n < m -> exists a, loop n s = inl a) /\ (m <= n -> loop n s = inr b))
      /\
      (iterations_required fuel s = None -> forall n, n < fuel -> exists a, loop n s = inl a).
    Proof.
      induction fuel; intros.
      { cbn. split; intros; inversion_option; lia. }
      { change (iterations_required (S fuel) s)
          with (match iterations_required fuel s with
                | None => match loop fuel s with
                          | inl _ => None
                          | inr _ => Some fuel
                          end
                | Some _ => iterations_required fuel s
                end) in *.
        destruct (iterations_required fuel s) in *.
        { split; intros; inversion_option; subst.
          destruct (proj1 IHfuel _ eq_refl); split; [lia|assumption]. }
        { destruct (loop fuel s) eqn:HSf; split; intros; inversion_option; subst.
          { intros. destruct (PeanoNat.Nat.eq_dec n fuel); subst; eauto; [].
            assert (n < fuel) by lia. eapply IHfuel; congruence. }
          { split; [lia|].
            exists b; intros; split; intros.
            { eapply IHfuel; congruence || lia. }
            { eapply PeanoNat.Nat.le_exists_sub in H; destruct H as [?[]]; subst.
              eauto using loop_fuel_add_stable. } } } }
    Qed.

    Lemma iterations_required_step fuel s s' n
          (Hs : iterations_required fuel s = Some (S n))
          (Hstep : body s = inl s')
      : iterations_required fuel s' = Some n.
    Proof.
      eapply iterations_required_correct in Hs.
      destruct Hs as [Hn [b Hs]].
      pose proof (proj2 (Hs (S n)) ltac:(lia)) as H.
      rewrite loop_fuel_S_first, Hstep in H.
      destruct (iterations_required fuel s') as [x|] eqn:Hs' in *; [f_equal|exfalso].
      { eapply iterations_required_correct in Hs'; destruct Hs' as [Hx Hs'].
        destruct Hs' as [b' Hs'].
        destruct (Compare_dec.le_lt_dec n x) as [Hc|Hc].
        { destruct (Compare_dec.le_lt_dec x n) as [Hc'|Hc']; try lia; [].
          destruct (proj1 (Hs' n) Hc'); congruence. }
        { destruct (proj1 (Hs (S x)) ltac:(lia)) as [? HX].
          rewrite loop_fuel_S_first, Hstep in HX.
          pose proof (proj2 (Hs' x) ltac:(lia)).
          congruence. } }
      { eapply iterations_required_correct in Hs'; destruct Hs' as [? Hs'];
          [|exact Hn].
        rewrite loop_fuel_S_last, H in Hs'; congruence. }
    Qed.

    Local Lemma invariant_complete (P:_->Prop) f s0 b (H:loop f s0 = inr b) (HP:P b)
      : exists inv measure,
        (inv s0 /\ measure s0 <= f)
        /\ forall s, inv s -> match body s with
                              | inl s' => inv s' /\ measure s' < measure s
                              | inr s' => P s'
                              end.
    Proof.
      set (measure s := match iterations_required (S f) s with None => 0 | Some n => n end).
      exists (fun s => match loop (measure s) s with
                       | inl a => False
                       | inr r => r = b end).
      exists (measure); split; [ |repeat match goal with |- _ /\ _ => split end..].
      { cbv [measure].
        destruct (iterations_required (S f) s0) eqn:Hs0;
          eapply iterations_required_correct in Hs0;
          [ .. | exact (ltac:(lia):f <S f)]; [|destruct_head'_ex; congruence].
        destruct Hs0 as [? [? Hs0]]; split; [|lia].
        pose proof (proj2 (Hs0 n) ltac:(lia)) as HH; rewrite HH.
        exact (loop_fuel_irrelevant _ _ _ _ _ HH H). }
      { intros s Hinv; destruct (body s) as [s'|c] eqn:Hstep.
        { destruct (loop (measure s) s) eqn:Hs; [contradiction|subst].
          cbv [measure] in *.
          destruct (iterations_required (S f) s) eqn:Hs' in *; try destruct n;
            try (rewrite loop_fuel_0 in Hs; congruence); [].
          pose proof (iterations_required_step _ _ s' _ Hs' Hstep) as HA.
          rewrite HA.
          destruct (proj1 (iterations_required_correct _ _) _ HA) as [? [? [? HE']]].
          pose proof (HE' ltac:(constructor)) as HE; clear HE'.
          split; [|lia].
          rewrite loop_fuel_S_first, Hstep in Hs.
          break_match; congruence. }
        { destruct (loop (measure s) s) eqn:Hs; [contradiction|].
          assert (HH: loop 1 s = inr c) by (cbn; rewrite Hstep; reflexivity).
          rewrite (loop_fuel_irrelevant _ _ _ _ _ HH Hs); congruence. } }
    Qed.

    Lemma invariant_iff P f s0 :
      (exists b, loop f s0 = inr b /\ P b)
      <->
      (exists inv measure,
          (inv s0 /\ measure s0 <= f)
          /\ forall s, inv s -> match body s with
                                | inl s' => inv s' /\ measure s' < measure s
                                | inr s' => P s'
                                end).
    Proof.
      repeat (intros || split || destruct_head'_ex || destruct_head'_and);
        eauto using invariant_complete, by_invariant_fuel.
    Qed.
  End Loops.

  Global Arguments loop_cps_ok {A B body body_cps}.
  Global Arguments loop_cps2_ok {A B body body_cps2}.
  Global Arguments by_invariant_fuel {A B body} inv measure P.
  Global Arguments by_invariant {A B body} inv measure P.
  Global Arguments invariant_iff {A B body} P f s0.
  Global Arguments iterations_required_correct {A B body} fuel s.
End core.

Module default.
  Section Default.
    Context {A B} (default : B) (body : A -> A + B).
    Definition loop fuel s : B :=
      match loop body fuel s with
      | inl s => default
      | inr s => s
      end.

    Lemma by_invariant_fuel inv measure (P:_->Prop) f s0
          (init : inv s0 /\ measure s0 <= f)
          (step: forall s, inv s -> match body s with
                                    | inl s' => inv s' /\ measure s' < measure s
                                    | inr s' => P s'
                                    end)
      : P (loop f s0).
    Proof.
      edestruct (by_invariant_fuel (body:=body) inv measure P f s0) as [x [HA HB]]; eauto; [].
      apply (f_equal (fun r : A + B => match r with inl s => default | inr s => s end)) in HA.
      cbv [loop]; break_match; congruence.
    Qed.

    Lemma by_invariant (inv:_->Prop) measure P s0
          (init : inv s0)
          (step: forall s, inv s -> match body s with
                                    | inl s' => inv s' /\ measure s' < measure s
                                    | inr s' => P s'
                                    end)
      : P (loop (measure s0) s0).
    Proof. eapply by_invariant_fuel; eauto. Qed.
  End Default.
  Global Arguments by_invariant_fuel {A B default body} inv measure P.
  Global Arguments by_invariant {A B default body} inv measure P.
End default.

Module silent.
  Section Silent.
    Context {state} (body : state -> state + state).
    Definition loop fuel s : state :=
      match loop body fuel s with
      | inl s => s
      | inr s => s
      end.

    Lemma by_invariant_fuel inv measure (P:_->Prop) f s0
          (init : inv s0 /\ measure s0 <= f)
          (step: forall s, inv s -> match body s with
                                    | inl s' => inv s' /\ measure s' < measure s
                                    | inr s' => P s'
                                    end)
      : P (loop f s0).
    Proof.
      edestruct (by_invariant_fuel (body:=body) inv measure P f s0) as [x [A B]]; eauto; [].
      apply (f_equal (fun r : state + state => match r with inl s => s | inr s => s end)) in A.
      cbv [loop]; break_match; congruence.
    Qed.

    Lemma by_invariant (inv:_->Prop) measure P s0
          (init : inv s0)
          (step: forall s, inv s -> match body s with
                                    | inl s' => inv s' /\ measure s' < measure s
                                    | inr s' => P s'
                                    end)
      : P (loop (measure s0) s0).
    Proof. eapply by_invariant_fuel; eauto. Qed.
  End Silent.

  Global Arguments by_invariant_fuel {state body} inv measure P.
  Global Arguments by_invariant {state body} inv measure P.
End silent.

Module while.
  Section While.
    Context {state}
            (test : state -> bool)
            (body : state -> state).

    Fixpoint while f s :=
      if test s
      then
        let s := body s in
        match f with
        | O => s
        | S f => while f s
        end
      else s.

    Local Definition lbody := fun s => if test s then inl (body s) else inr s.

    Lemma eq_loop f s : while f s = silent.loop lbody f s.
    Proof.
      revert s; induction f; intros s;
        repeat match goal with
               | _ => progress cbn in *
               | _ => progress cbv [silent.loop lbody] in *
               | _ => rewrite IHf
               | _ => progress break_match
               | _ => congruence
               end.
    Qed.

    Lemma by_invariant_fuel inv measure P f s0
          (init : inv s0 /\ measure s0 <= f)
          (step : forall s, inv s -> if test s
                                     then inv (body s) /\ measure (body s) < measure s
                                     else P s)
      : P (while f s0).
    Proof.
      rewrite eq_loop.
      eapply silent.by_invariant_fuel; eauto; []; intros s H; cbv [lbody].
      specialize (step s H); destruct (test s); eauto.
    Qed.

    Lemma by_invariant (inv:_->Prop) measure P s0
          (init : inv s0)
          (step : forall s, inv s -> if test s
                                     then inv (body s) /\ measure (body s) < measure s
                                     else P s)
      : P (while (measure s0) s0).
    Proof. eapply by_invariant_fuel; eauto. Qed.
    
    Context (body_cps : state ~> state).

    Fixpoint while_cps f s :~> state :=
      if test s
      then
        s <- body_cps s; 
          match f with
          | O => return s
                      | S f =>while_cps f s
          end
      else return s.

    Context (body_cps_ok : forall s {R} f, body_cps s R f = f (body s)).
    Lemma loop_cps_ok n s {R} f : while_cps n s R f = f (while n s).
    Proof.
      revert s; induction n; intros s; 
        repeat match goal with
               | _ => progress intros
               | _ => progress cbv [cpsreturn cpscall] in *
               | _ => progress cbn
               | _ => progress rewrite ?body_cps_ok
               | _ => progress rewrite ?IHn
               | _ => progress inversion_sum
               | _ => progress break_match
               | _ => reflexivity
               end.
    Qed.
  End While.
  Global Arguments by_invariant_fuel {state test body} inv measure P.
  Global Arguments by_invariant {state test body} inv measure P.
End while.
Notation while := while.while.

Definition for2 {state} (test : state -> bool) (increment body : state -> state)
  := while test (fun s => let s := body s in increment s). 

Definition for3 {state} init test increment body fuel :=
  @for2 state test increment body fuel init.

(* TODO: we probably want notations for these. here are some ideas: *)

(* notation for core.loop_cps2:
  loop '(state1, state2, ...) := init
    decreasing measure {{
    continue:
      body
  }} break;
  cont
where
  continue, break are binders (for continuations passed by core.loop_cps2)
  state1, state2 are binders for tuple fields
  measure is a function of state1, state2, ... (or the tuple bound by them)
  body is a function of continue_label, state1, state2, ...
  cont is the contiuation passed to core.loop_cps2
  "loop" and "decreasing" are delimiters
*)

(* notation for while.while_cps:
  
  loop '(state1, state2, ...) := init
  while test
  decreasing measure {{
    continue:
      body
  }};
  cont
where
  state1, state2, continue are binders
  body is a function of all of them
  test and measure are functions of state1, state2 (or the tuple bound by them)
  "loop", "while" and "decreasing" are delimiters
  cont is a continuation to the entire loop
 *)


(* idea for notation for some for-like loop:
loop '(state1, state2) := init
for (i := 0; i <? n; i+1) {{
  continue:
    body
}};
cont

where the first i is a binder for all uses of i, and the test and increment are parsed as functions of some argument *)

(* ideally it should be possible to explicitly indicate the type of the loop state somewhere, in all these examples *)