aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ListUtil.v
blob: 74c2b8537caba8ab0fae3478e217ef80ca6f292a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
Require Import Coq.Lists.List.
Require Import Coq.omega.Omega.
Require Import Coq.Arith.Peano_dec.
Require Import Coq.Classes.Morphisms.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Require Import Crypto.Util.NatUtil.
Require Export Crypto.Util.FixCoqMistakes.

Create HintDb distr_length discriminated.
Create HintDb simpl_set_nth discriminated.
Create HintDb simpl_update_nth discriminated.
Create HintDb simpl_nth_default discriminated.
Create HintDb simpl_nth_error discriminated.
Create HintDb simpl_firstn discriminated.
Create HintDb simpl_skipn discriminated.
Create HintDb simpl_fold_right discriminated.
Create HintDb simpl_sum_firstn discriminated.
Create HintDb pull_nth_error discriminated.
Create HintDb push_nth_error discriminated.
Create HintDb pull_nth_default discriminated.
Create HintDb push_nth_default discriminated.
Create HintDb pull_firstn discriminated.
Create HintDb push_firstn discriminated.
Create HintDb pull_update_nth discriminated.
Create HintDb push_update_nth discriminated.
Create HintDb znonzero discriminated.

Hint Rewrite
  @app_length
  @rev_length
  @map_length
  @seq_length
  @fold_left_length
  @split_length_l
  @split_length_r
  @firstn_length
  @combine_length
  @prod_length
  : distr_length.

Hint Extern 1 => progress autorewrite with distr_length in * : distr_length.

Definition sum_firstn l n := fold_right Z.add 0%Z (firstn n l).

Fixpoint map2 {A B C} (f : A -> B -> C) (la : list A) (lb : list B) : list C :=
  match la with
  | nil => nil
  | a :: la' => match lb with
                | nil => nil
                | b :: lb' => f a b :: map2 f la' lb'
                end
  end.

(* xs[n] := f xs[n] *)
Fixpoint update_nth {T} n f (xs:list T) {struct n} :=
	match n with
	| O => match xs with
				 | nil => nil
				 | x'::xs' => f x'::xs'
				 end
	| S n' =>  match xs with
				 | nil => nil
				 | x'::xs' => x'::update_nth n' f xs'
				 end
  end.

(* xs[n] := x *)
Definition set_nth {T} n x (xs:list T)
  := update_nth n (fun _ => x) xs.

Definition splice_nth {T} n (x:T) xs := firstn n xs ++ x :: skipn (S n) xs.
Hint Unfold splice_nth.

Ltac boring :=
  simpl; intuition auto with zarith datatypes;
  repeat match goal with
           | [ H : _ |- _ ] => rewrite H; clear H
           | [ |- appcontext[match ?pf with end] ] => solve [ case pf ]
           | _ => progress autounfold in *
           | _ => progress autorewrite with core
           | _ => progress simpl in *
           | _ => progress intuition auto with zarith datatypes
         end; eauto.

Ltac boring_list :=
  repeat match goal with
         | _ => progress boring
         | _ => progress autorewrite with distr_length simpl_nth_default simpl_update_nth simpl_set_nth simpl_nth_error in *
         end.

Lemma nth_default_cons : forall {T} (x u0 : T) us, nth_default x (u0 :: us) 0 = u0.
Proof. auto. Qed.

Hint Rewrite @nth_default_cons : simpl_nth_default.
Hint Rewrite @nth_default_cons : push_nth_default.

Lemma nth_default_cons_S : forall {A} us (u0 : A) n d,
  nth_default d (u0 :: us) (S n) = nth_default d us n.
Proof. boring. Qed.

Hint Rewrite @nth_default_cons_S : simpl_nth_default.
Hint Rewrite @nth_default_cons_S : push_nth_default.

Lemma nth_default_nil : forall {T} n (d : T), nth_default d nil n = d.
Proof. induction n; boring. Qed.

Hint Rewrite @nth_default_nil : simpl_nth_default.
Hint Rewrite @nth_default_nil : push_nth_default.

Lemma nth_error_nil_error : forall {A} n, nth_error (@nil A) n = None.
Proof. induction n; boring. Qed.

Hint Rewrite @nth_error_nil_error : simpl_nth_error.

Ltac nth_tac' :=
  intros; simpl in *; unfold error,value in *; repeat progress (match goal with
    | [  |- context[nth_error nil ?n] ] => rewrite nth_error_nil_error
    | [ H: ?x = Some _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [ H: ?x = None _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] => case_eq (nth_error xs i); intros
    | [ |- context[(if lt_dec ?a ?b then _ else _) = _] ] => destruct (lt_dec a b)
    | [ |- context[_ = (if lt_dec ?a ?b then _ else _)] ] => destruct (lt_dec a b)
    | [ H: context[(if lt_dec ?a ?b then _ else _) = _] |- _ ] => destruct (lt_dec a b)
    | [ H: context[_ = (if lt_dec ?a ?b then _ else _)] |- _ ] => destruct (lt_dec a b)
    | [ H: _ /\ _ |- _ ] => destruct H
    | [ H: Some _ = Some _ |- _ ] => injection H; clear H; intros; subst
    | [ H: None = Some _  |- _ ] => inversion H
    | [ H: Some _ = None |- _ ] => inversion H
    | [ |- Some _ = Some _ ] => apply f_equal
  end); eauto; try (autorewrite with list in *); try omega; eauto.
Lemma nth_error_map : forall A B (f:A->B) i xs y,
  nth_error (map f xs) i = Some y ->
  exists x, nth_error xs i = Some x /\ f x = y.
Proof.
  induction i; destruct xs; nth_tac'.
Qed.

Lemma nth_error_seq : forall i start len,
  nth_error (seq start len) i =
  if lt_dec i len
  then Some (start + i)
  else None.
  induction i; destruct len; nth_tac'; erewrite IHi; nth_tac'.
Qed.

Lemma nth_error_error_length : forall A i (xs:list A), nth_error xs i = None ->
  i >= length xs.
Proof.
  induction i; destruct xs; nth_tac'; try specialize (IHi _ H); omega.
Qed.

Lemma nth_error_value_length : forall A i (xs:list A) x, nth_error xs i = Some x ->
  i < length xs.
Proof.
  induction i; destruct xs; nth_tac'; try specialize (IHi _ _ H); omega.
Qed.

Lemma nth_error_length_error : forall A i (xs:list A),
  i >= length xs ->
  nth_error xs i = None.
Proof.
  induction i; destruct xs; nth_tac'; rewrite IHi by omega; auto.
Qed.
Hint Resolve nth_error_length_error.
Hint Rewrite @nth_error_length_error using omega : simpl_nth_error.

Lemma map_nth_default : forall (A B : Type) (f : A -> B) n x y l,
  (n < length l) -> nth_default y (map f l) n = f (nth_default x l n).
Proof.
  intros.
  unfold nth_default.
  erewrite map_nth_error.
  reflexivity.
  nth_tac'.
  pose proof (nth_error_error_length A n l H0).
  omega.
Qed.

(* Note: this is a duplicate of a lemma that exists in 8.5, included for
   8.4 support *)
Lemma In_nth : forall {A} (x : A) d xs, In x xs ->
  exists i, i < length xs /\ nth i xs d = x.
Proof.
  induction xs; intros;
    match goal with H : In _ _ |- _ => simpl in H; destruct H end.
  + subst. exists 0. simpl; split; auto || omega.
  + destruct IHxs as [i [ ]]; auto.
    exists (S i).
    split; auto; simpl; try omega.
Qed.

Hint Rewrite @map_nth_default using omega : push_nth_default.

Ltac nth_tac :=
  repeat progress (try nth_tac'; try (match goal with
    | [ H: nth_error (map _ _) _ = Some _ |- _ ] => destruct (nth_error_map _ _ _ _ _ _ H); clear H
    | [ H: nth_error (seq _ _) _ = Some _ |- _ ] => rewrite nth_error_seq in H
    | [H: nth_error _ _ = None |- _ ] => specialize (nth_error_error_length _ _ _ H); intro; clear H
  end)).

Lemma app_cons_app_app : forall T xs (y:T) ys, xs ++ y :: ys = (xs ++ (y::nil)) ++ ys.
Proof. induction xs; boring. Qed.

Lemma unfold_set_nth {T} n x
  : forall xs,
    @set_nth T n x xs
    = match n with
      | O => match xs with
	     | nil => nil
	     | x'::xs' => x::xs'
	     end
      | S n' =>  match xs with
		 | nil => nil
		 | x'::xs' => x'::set_nth n' x xs'
		 end
      end.
Proof.
  induction n; destruct xs; reflexivity.
Qed.

Lemma simpl_set_nth_0 {T} x
  : forall xs,
    @set_nth T 0 x xs
    = match xs with
      | nil => nil
      | x'::xs' => x::xs'
      end.
Proof. intro; rewrite unfold_set_nth; reflexivity. Qed.

Lemma simpl_set_nth_S {T} x n
  : forall xs,
    @set_nth T (S n) x xs
    = match xs with
      | nil => nil
      | x'::xs' => x'::set_nth n x xs'
      end.
Proof. intro; rewrite unfold_set_nth; reflexivity. Qed.

Hint Rewrite @simpl_set_nth_S @simpl_set_nth_0 : simpl_set_nth.

Lemma update_nth_ext {T} f g n
  : forall xs, (forall x, nth_error xs n = Some x -> f x = g x)
               -> @update_nth T n f xs = @update_nth T n g xs.
Proof.
  induction n; destruct xs; simpl; intros H;
    try rewrite IHn; try rewrite H;
      try congruence; trivial.
Qed.

Global Instance update_nth_Proper {T}
  : Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@update_nth T).
Proof. repeat intro; subst; apply update_nth_ext; trivial. Qed.

Lemma update_nth_id_eq_specific {T} f n
  : forall (xs : list T) (H : forall x, nth_error xs n = Some x -> f x = x),
    update_nth n f xs = xs.
Proof.
  induction n; destruct xs; simpl; intros;
    try rewrite IHn; try rewrite H; unfold value in *;
      try congruence; assumption.
Qed.

Hint Rewrite @update_nth_id_eq_specific using congruence : simpl_update_nth.

Lemma update_nth_id_eq : forall {T} f (H : forall x, f x = x) n (xs : list T),
    update_nth n f xs = xs.
Proof. intros; apply update_nth_id_eq_specific; trivial. Qed.

Hint Rewrite @update_nth_id_eq using congruence : simpl_update_nth.

Lemma update_nth_id : forall {T} n (xs : list T),
    update_nth n (fun x => x) xs = xs.
Proof. intros; apply update_nth_id_eq; trivial. Qed.

Hint Rewrite @update_nth_id : simpl_update_nth.

Lemma nth_update_nth : forall m {T} (xs:list T) (n:nat) (f:T -> T),
  nth_error (update_nth m f xs) n =
  if eq_nat_dec n m
  then option_map f (nth_error xs n)
  else nth_error xs n.
Proof.
  induction m.
  { destruct n, xs; auto. }
  { destruct xs, n; intros; simpl; auto;
      [ | rewrite IHm ]; clear IHm;
        edestruct eq_nat_dec; reflexivity. }
Qed.

Hint Rewrite @nth_update_nth : push_nth_error.
Hint Rewrite <- @nth_update_nth : pull_nth_error.

Lemma length_update_nth : forall {T} i f (xs:list T), length (update_nth i f xs) = length xs.
Proof.
  induction i, xs; boring.
Qed.

Hint Rewrite @length_update_nth : distr_length.

(** TODO: this is in the stdlib in 8.5; remove this when we move to 8.5-only *)
Lemma nth_error_None : forall (A : Type) (l : list A) (n : nat), nth_error l n = None <-> length l <= n.
Proof.
  intros A l n.
  destruct (le_lt_dec (length l) n) as [H|H];
    split; intro H';
      try omega;
      try (apply nth_error_length_error in H; tauto);
      try (apply nth_error_error_length in H'; omega).
Qed.

(** TODO: this is in the stdlib in 8.5; remove this when we move to 8.5-only *)
Lemma nth_error_Some : forall (A : Type) (l : list A) (n : nat), nth_error l n <> None <-> n < length l.
Proof. intros; rewrite nth_error_None; split; omega. Qed.

Lemma nth_set_nth : forall m {T} (xs:list T) (n:nat) x,
  nth_error (set_nth m x xs) n =
  if eq_nat_dec n m
  then (if lt_dec n (length xs) then Some x else None)
  else nth_error xs n.
Proof.
  intros; unfold set_nth; rewrite nth_update_nth.
  destruct (nth_error xs n) eqn:?, (lt_dec n (length xs)) as [p|p];
    rewrite <- nth_error_Some in p;
    solve [ reflexivity
          | exfalso; apply p; congruence ].
Qed.

Hint Rewrite @nth_set_nth : push_nth_error.

Lemma length_set_nth : forall {T} i x (xs:list T), length (set_nth i x xs) = length xs.
Proof. intros; apply length_update_nth. Qed.

Hint Rewrite @length_set_nth : distr_length.

Lemma nth_error_length_exists_value : forall {A} (i : nat) (xs : list A),
  (i < length xs)%nat -> exists x, nth_error xs i = Some x.
Proof.
  induction i, xs; boring; try omega.
Qed.

Lemma nth_error_length_not_error : forall {A} (i : nat) (xs : list A),
  nth_error xs i = None -> (i < length xs)%nat -> False.
Proof.
  intros.
  destruct (nth_error_length_exists_value i xs); intuition; congruence.
Qed.

Lemma nth_error_value_eq_nth_default : forall {T} i (x : T) xs,
  nth_error xs i = Some x -> forall d, nth_default d xs i = x.
Proof.
  unfold nth_default; boring.
Qed.

Hint Rewrite @nth_error_value_eq_nth_default using eassumption : simpl_nth_default.

Lemma skipn0 : forall {T} (xs:list T), skipn 0 xs = xs.
Proof. auto. Qed.

Lemma firstn0 : forall {T} (xs:list T), firstn 0 xs = nil.
Proof. auto. Qed.

Lemma destruct_repeat : forall {A} xs y, (forall x : A, In x xs -> x = y) ->
  xs = nil \/ exists xs', xs = y :: xs' /\ (forall x : A, In x xs' -> x = y).
Proof.
  destruct xs; intros; try tauto.
  right.
  exists xs; split.
  + f_equal; auto using in_eq.
  + intros; auto using in_cons.
Qed.

Lemma splice_nth_equiv_update_nth : forall {T} n f d (xs:list T),
  splice_nth n (f (nth_default d xs n)) xs =
  if lt_dec n (length xs)
  then update_nth n f xs
  else xs ++ (f d)::nil.
Proof.
  induction n, xs; boring_list.
  do 2 break_if; auto; omega.
Qed.

Lemma splice_nth_equiv_update_nth_update : forall {T} n f d (xs:list T),
  n < length xs ->
  splice_nth n (f (nth_default d xs n)) xs = update_nth n f xs.
Proof.
  intros.
  rewrite splice_nth_equiv_update_nth.
  break_if; auto; omega.
Qed.

Lemma splice_nth_equiv_update_nth_snoc : forall {T} n f d (xs:list T),
  n >= length xs ->
  splice_nth n (f (nth_default d xs n)) xs = xs ++ (f d)::nil.
Proof.
  intros.
  rewrite splice_nth_equiv_update_nth.
  break_if; auto; omega.
Qed.

Definition IMPOSSIBLE {T} : list T. exact nil. Qed.

Ltac remove_nth_error :=
  repeat match goal with
         | _ => exfalso; solve [ eauto using @nth_error_length_not_error ]
         | [ |- context[match nth_error ?ls ?n with _ => _ end] ]
           => destruct (nth_error ls n) eqn:?
         end.

Lemma update_nth_equiv_splice_nth: forall {T} n f (xs:list T),
  update_nth n f xs =
  if lt_dec n (length xs)
  then match nth_error xs n with
       | Some v => splice_nth n (f v) xs
       | None => IMPOSSIBLE
       end
  else xs.
Proof.
  induction n; destruct xs; intros;
    autorewrite with simpl_update_nth simpl_nth_default in *; simpl in *;
      try (erewrite IHn; clear IHn); auto.
  repeat break_match; remove_nth_error; try reflexivity; try omega.
Qed.

Lemma splice_nth_equiv_set_nth : forall {T} n x (xs:list T),
  splice_nth n x xs =
  if lt_dec n (length xs)
  then set_nth n x xs
  else xs ++ x::nil.
Proof. intros; rewrite splice_nth_equiv_update_nth with (f := fun _ => x); auto. Qed.

Lemma splice_nth_equiv_set_nth_set : forall {T} n x (xs:list T),
  n < length xs ->
  splice_nth n x xs = set_nth n x xs.
Proof. intros; rewrite splice_nth_equiv_update_nth_update with (f := fun _ => x); auto. Qed.

Lemma splice_nth_equiv_set_nth_snoc : forall {T} n x (xs:list T),
  n >= length xs ->
  splice_nth n x xs = xs ++ x::nil.
Proof. intros; rewrite splice_nth_equiv_update_nth_snoc with (f := fun _ => x); auto. Qed.

Lemma set_nth_equiv_splice_nth: forall {T} n x (xs:list T),
  set_nth n x xs =
  if lt_dec n (length xs)
  then splice_nth n x xs
  else xs.
Proof.
  intros; unfold set_nth; rewrite update_nth_equiv_splice_nth with (f := fun _ => x); auto.
  repeat break_match; remove_nth_error; trivial.
Qed.

Lemma combine_update_nth : forall {A B} n f g (xs:list A) (ys:list B),
  combine (update_nth n f xs) (update_nth n g ys) =
  update_nth n (fun xy => (f (fst xy), g (snd xy))) (combine xs ys).
Proof.
  induction n; destruct xs, ys; simpl; try rewrite IHn; reflexivity.
Qed.

(* grumble, grumble, [rewrite] is bad at inferring the identity function, and constant functions *)
Ltac rewrite_rev_combine_update_nth :=
  let lem := match goal with
             | [ |- appcontext[update_nth ?n (fun xy => (@?f xy, @?g xy)) (combine ?xs ?ys)] ]
               => let f := match (eval cbv [fst] in (fun y x => f (x, y))) with
                           | fun _ => ?f => f
                           end in
                  let g := match (eval cbv [snd] in (fun x y => g (x, y))) with
                           | fun _ => ?g => g
                           end in
                  constr:(@combine_update_nth _ _ n f g xs ys)
             end in
  rewrite <- lem.

Lemma combine_update_nth_l : forall {A B} n (f : A -> A) xs (ys:list B),
  combine (update_nth n f xs) ys =
  update_nth n (fun xy => (f (fst xy), snd xy)) (combine xs ys).
Proof.
  intros ??? f xs ys.
  etransitivity; [ | apply combine_update_nth with (g := fun x => x) ].
  rewrite update_nth_id; reflexivity.
Qed.

Lemma combine_update_nth_r : forall {A B} n (g : B -> B) (xs:list A) (ys:list B),
  combine xs (update_nth n g ys) =
  update_nth n (fun xy => (fst xy, g (snd xy))) (combine xs ys).
Proof.
  intros ??? g xs ys.
  etransitivity; [ | apply combine_update_nth with (f := fun x => x) ].
  rewrite update_nth_id; reflexivity.
Qed.

Lemma combine_set_nth : forall {A B} n (x:A) xs (ys:list B),
  combine (set_nth n x xs) ys =
    match nth_error ys n with
    | None => combine xs ys
    | Some y => set_nth n (x,y) (combine xs ys)
    end.
Proof.
  intros; unfold set_nth; rewrite combine_update_nth_l.
  nth_tac;
    [ repeat rewrite_rev_combine_update_nth; apply f_equal2
    | assert (nth_error (combine xs ys) n = None)
      by (apply nth_error_None; rewrite combine_length; omega * ) ];
    autorewrite with simpl_update_nth; reflexivity.
Qed.

Lemma nth_error_value_In : forall {T} n xs (x:T),
  nth_error xs n = Some x -> In x xs.
Proof.
  induction n; destruct xs; nth_tac.
Qed.

Lemma In_nth_error_value : forall {T} xs (x:T),
  In x xs -> exists n, nth_error xs n = Some x.
Proof.
  induction xs; nth_tac; break_or_hyp.
  - exists 0; reflexivity.
  - edestruct IHxs; eauto. exists (S x0). eauto.
Qed.

Lemma nth_value_index : forall {T} i xs (x:T),
  nth_error xs i = Some x -> In i (seq 0 (length xs)).
Proof.
  induction i; destruct xs; nth_tac; right.
  rewrite <- seq_shift; apply in_map; eapply IHi; eauto.
Qed.

Lemma nth_error_app : forall {T} n (xs ys:list T), nth_error (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_error xs n
  else nth_error ys (n - length xs).
Proof.
  induction n; destruct xs; nth_tac;
    rewrite IHn; destruct (lt_dec n (length xs)); trivial; omega.
Qed.

Lemma nth_default_app : forall {T} n x (xs ys:list T), nth_default x (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_default x xs n
  else nth_default x ys (n - length xs).
Proof.
  intros.
  unfold nth_default.
  rewrite nth_error_app.
  destruct (lt_dec n (length xs)); auto.
Qed.

Hint Rewrite @nth_default_app : push_nth_default.

Lemma combine_truncate_r : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine xs (firstn (length xs) ys).
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_truncate_l : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine (firstn (length ys) xs) ys.
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_app_samelength : forall {A B} (xs xs':list A) (ys ys':list B),
  length xs = length ys ->
  combine (xs ++ xs') (ys ++ ys') = combine xs ys ++ combine xs' ys'.
Proof.
  induction xs, xs', ys, ys'; boring; omega.
Qed.

Lemma firstn_nil : forall {A} n, firstn n nil = @nil A.
Proof. destruct n; auto. Qed.

Hint Rewrite @firstn_nil : simpl_firstn.

Lemma skipn_nil : forall {A} n, skipn n nil = @nil A.
Proof. destruct n; auto. Qed.

Hint Rewrite @skipn_nil : simpl_skipn.

Lemma firstn_0 : forall {A} xs, @firstn A 0 xs = nil.
Proof. reflexivity. Qed.

Hint Rewrite @firstn_0 : simpl_firstn.

Lemma skipn_0 : forall {A} xs, @skipn A 0 xs = xs.
Proof. reflexivity. Qed.

Hint Rewrite @skipn_0 : simpl_skipn.

Lemma firstn_cons_S : forall {A} n x xs, @firstn A (S n) (x::xs) = x::@firstn A n xs.
Proof. reflexivity. Qed.

Hint Rewrite @firstn_cons_S : simpl_firstn.

Lemma skipn_cons_S : forall {A} n x xs, @skipn A (S n) (x::xs) = @skipn A n xs.
Proof. reflexivity. Qed.

Hint Rewrite @skipn_cons_S : simpl_skipn.

Lemma firstn_app : forall {A} n (xs ys : list A),
  firstn n (xs ++ ys) = firstn n xs ++ firstn (n - length xs) ys.
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma skipn_app : forall {A} n (xs ys : list A),
  skipn n (xs ++ ys) = skipn n xs ++ skipn (n - length xs) ys.
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma firstn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  firstn n (xs ++ ys) = firstn n xs.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Lemma skipn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  skipn n (xs ++ ys) = skipn n xs ++ ys.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Lemma firstn_all : forall {A} n (xs:list A), n = length xs -> firstn n xs = xs.
Proof.
  induction n, xs; boring; omega.
Qed.

Lemma skipn_all : forall {T} n (xs:list T),
  (n >= length xs)%nat ->
  skipn n xs = nil.
Proof.
  induction n, xs; boring; omega.
Qed.

Lemma firstn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  firstn n (l ++ l') = l.
Proof.
  intros.
  rewrite firstn_app_inleft; auto using firstn_all; omega.
Qed.

Lemma skipn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  skipn n (l ++ l') = l'.
Proof.
  intros.
  rewrite skipn_app_inleft; try rewrite skipn_all; auto; omega.
Qed.

Lemma skipn_length : forall {A} n (xs : list A),
  length (skipn n xs) = (length xs - n)%nat.
Proof.
  induction n, xs; boring.
Qed.

Lemma fold_right_cons : forall {A B} (f:B->A->A) a b bs,
  fold_right f a (b::bs) = f b (fold_right f a bs).
Proof.
  reflexivity.
Qed.

Hint Rewrite @fold_right_cons : simpl_fold_right.

Lemma length_cons : forall {T} (x:T) xs, length (x::xs) = S (length xs).
  reflexivity.
Qed.

Lemma cons_length : forall A (xs : list A) a, length (a :: xs) = S (length xs).
Proof.
  auto.
Qed.

Lemma length0_nil : forall {A} (xs : list A), length xs = 0%nat -> xs = nil.
Proof.
  induction xs; boring; discriminate.
Qed.

Lemma length_snoc : forall {T} xs (x:T),
  length xs = pred (length (xs++x::nil)).
Proof.
  boring; simpl_list; boring.
Qed.

Lemma firstn_combine : forall {A B} n (xs:list A) (ys:list B),
  firstn n (combine xs ys) = combine (firstn n xs) (firstn n ys).
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma combine_nil_r : forall {A B} (xs:list A),
  combine xs (@nil B) = nil.
Proof.
  induction xs; boring.
Qed.

Lemma skipn_combine : forall {A B} n (xs:list A) (ys:list B),
  skipn n (combine xs ys) = combine (skipn n xs) (skipn n ys).
Proof.
  induction n, xs, ys; boring.
  rewrite combine_nil_r; reflexivity.
Qed.

Lemma break_list_last: forall {T} (xs:list T),
  xs = nil \/ exists xs' y, xs = xs' ++ y :: nil.
Proof.
  destruct xs using rev_ind; auto.
  right; do 2 eexists; auto.
Qed.

Lemma break_list_first: forall {T} (xs:list T),
  xs = nil \/ exists x xs', xs = x :: xs'.
Proof.
  destruct xs; auto.
  right; do 2 eexists; auto.
Qed.

Lemma list012 : forall {T} (xs:list T),
  xs = nil
  \/ (exists x, xs = x::nil)
  \/ (exists x xs' y, xs = x::xs'++y::nil).
Proof.
  destruct xs; auto.
  right.
  destruct xs using rev_ind. {
    left; eexists; auto.
  } {
    right; repeat eexists; auto.
  }
Qed.

Lemma nil_length0 : forall {T}, length (@nil T) = 0%nat.
Proof.
  auto.
Qed.

Lemma nth_error_Some_nth_default : forall {T} i x (l : list T), (i < length l)%nat ->
  nth_error l i = Some (nth_default x l i).
Proof.
  intros ? ? ? ? i_lt_length.
  destruct (nth_error_length_exists_value _ _ i_lt_length) as [k nth_err_k].
  unfold nth_default.
  rewrite nth_err_k.
  reflexivity.
Qed.

Lemma update_nth_cons : forall {T} f (u0 : T) us, update_nth 0 f (u0 :: us) = (f u0) :: us.
Proof. reflexivity. Qed.

Hint Rewrite @update_nth_cons : simpl_update_nth.

Lemma set_nth_cons : forall {T} (x u0 : T) us, set_nth 0 x (u0 :: us) = x :: us.
Proof. intros; apply update_nth_cons. Qed.

Hint Rewrite @set_nth_cons : simpl_set_nth.

Hint Rewrite
  @nil_length0
  @length_cons
  @skipn_length
  @length_update_nth
  @length_set_nth
  : distr_length.
Ltac distr_length := autorewrite with distr_length in *;
  try solve [simpl in *; omega].

Lemma cons_update_nth : forall {T} n f (y : T) us,
  y :: update_nth n f us = update_nth (S n) f (y :: us).
Proof.
  induction n; boring.
Qed.

Hint Rewrite <- @cons_update_nth : simpl_update_nth.

Lemma update_nth_nil : forall {T} n f, update_nth n f (@nil T) = @nil T.
Proof.
  induction n; boring.
Qed.

Hint Rewrite @update_nth_nil : simpl_update_nth.

Lemma cons_set_nth : forall {T} n (x y : T) us,
  y :: set_nth n x us = set_nth (S n) x (y :: us).
Proof. intros; apply cons_update_nth. Qed.

Hint Rewrite <- @cons_set_nth : simpl_set_nth.

Lemma set_nth_nil : forall {T} n (x : T), set_nth n x nil = nil.
Proof. intros; apply update_nth_nil. Qed.

Hint Rewrite @set_nth_nil : simpl_set_nth.

Lemma skipn_nth_default : forall {T} n us (d : T), (n < length us)%nat ->
 skipn n us = nth_default d us n :: skipn (S n) us.
Proof.
  induction n; destruct us; intros; nth_tac.
  rewrite (IHn us d) at 1 by omega.
  nth_tac.
Qed.

Lemma nth_default_out_of_bounds : forall {T} n us (d : T), (n >= length us)%nat ->
  nth_default d us n = d.
Proof.
  induction n; unfold nth_default; nth_tac; destruct us; nth_tac.
  assert (n >= length us)%nat by omega.
  pose proof (nth_error_length_error _ n us H1).
  rewrite H0 in H2.
  congruence.
Qed.

Hint Rewrite @nth_default_out_of_bounds using omega : simpl_nth_default.

Ltac nth_error_inbounds :=
  match goal with
  | [ |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] =>
    case_eq (nth_error xs i);
    match goal with
      | [ |- forall _, nth_error xs i = Some _ -> _ ] =>
          let x := fresh "x" in
          let H := fresh "H" in
          intros x H;
          repeat progress erewrite H;
          repeat progress erewrite (nth_error_value_eq_nth_default i xs x); auto
      | [ |- nth_error xs i = None -> _ ] =>
          let H := fresh "H" in
          intros H;
          destruct (nth_error_length_not_error _ _ H);
          try solve [distr_length]
    end;
    idtac
  end.
Ltac set_nth_inbounds :=
  match goal with
  | [ |- context[set_nth ?i ?x ?xs] ] =>
    rewrite (set_nth_equiv_splice_nth i x xs);
    destruct (lt_dec i (length xs));
    match goal with
    | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H
    | [ H :   (i < (length xs))%nat |- _ ] => try solve [distr_length]
    end
  end.
Ltac update_nth_inbounds :=
  match goal with
  | [ |- context[update_nth ?i ?f ?xs] ] =>
    rewrite (update_nth_equiv_splice_nth i f xs);
    destruct (lt_dec i (length xs));
    match goal with
    | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H
    | [ H :   (i < (length xs))%nat |- _ ] => remove_nth_error; try solve [distr_length]
    end
  end.

Ltac nth_inbounds := nth_error_inbounds || set_nth_inbounds || update_nth_inbounds.

Definition nth_dep {A} (ls : list A) (n : nat) (pf : n < length ls) : A.
Proof.
  refine (match nth_error ls n as v return nth_error ls n = v -> A with
          | Some v => fun _ => v
          | None => fun bad => match _ : False with end
          end eq_refl).
  apply (proj1 (@nth_error_None _ _ _)) in bad; instantiate; generalize dependent (length ls); clear.
  abstract (intros; omega).
Defined.

Lemma nth_error_nth_dep {A} ls n pf : nth_error ls n = Some (@nth_dep A ls n pf).
Proof.
  unfold nth_dep.
  generalize dependent (@nth_error_None A ls n).
  edestruct nth_error; boring.
Qed.

Lemma nth_default_nth_dep {A} d ls n pf : nth_default d ls n = @nth_dep A ls n pf.
Proof.
  unfold nth_dep.
  generalize dependent (@nth_error_None A ls n).
  destruct (nth_error ls n) eqn:?; boring.
  erewrite nth_error_value_eq_nth_default by eassumption; reflexivity.
Qed.

Lemma nth_default_in_bounds : forall {T} (d' d : T) n us, (n < length us)%nat ->
  nth_default d us n = nth_default d' us n.
Proof.
  intros; erewrite !nth_default_nth_dep; reflexivity.
  Grab Existential Variables.
  assumption.
Qed.

Hint Resolve @nth_default_in_bounds : simpl_nth_default.

Lemma cons_eq_head : forall {T} (x y:T) xs ys, x::xs = y::ys -> x=y.
Proof.
  intros; solve_by_inversion.
Qed.
Lemma cons_eq_tail : forall {T} (x y:T) xs ys, x::xs = y::ys -> xs=ys.
Proof.
  intros; solve_by_inversion.
Qed.

Lemma map_nth_default_always {A B} (f : A -> B) (n : nat) (x : A) (l : list A)
  : nth_default (f x) (map f l) n = f (nth_default x l n).
Proof.
  revert n; induction l; simpl; intro n; destruct n; [ try reflexivity.. ].
  nth_tac.
Qed.

Hint Rewrite @map_nth_default_always : push_nth_default.

Lemma fold_right_and_True_forall_In_iff : forall {T} (l : list T) (P : T -> Prop),
  (forall x, In x l -> P x) <-> fold_right and True (map P l).
Proof.
  induction l; intros; simpl; try tauto.
  rewrite <- IHl.
  intuition (subst; auto).
Qed.

Lemma fold_right_invariant : forall {A} P (f: A -> A -> A) l x,
  P x -> (forall y, In y l -> forall z, P z -> P (f y z)) ->
  P (fold_right f x l).
Proof.
  induction l; intros ? ? step; auto.
  simpl.
  apply step; try apply in_eq.
  apply IHl; auto.
  intros y in_y_l.
  apply (in_cons a) in in_y_l.
  auto.
Qed.

Lemma In_firstn : forall {T} n l (x : T), In x (firstn n l) -> In x l.
Proof.
  induction n; destruct l; boring.
Qed.

Lemma firstn_firstn : forall {A} m n (l : list A), (n <= m)%nat ->
  firstn n (firstn m l) = firstn n l.
Proof.
  induction m; destruct n; intros; try omega; auto.
  destruct l; auto.
  simpl.
  f_equal.
  apply IHm; omega.
Qed.

Lemma firstn_succ : forall {A} (d : A) n l, (n < length l)%nat ->
  firstn (S n) l = (firstn n l) ++ nth_default d l n :: nil.
Proof.
  induction n; destruct l; rewrite ?(@nil_length0 A); intros; try omega.
  + rewrite nth_default_cons; auto.
  + simpl.
    rewrite nth_default_cons_S.
    rewrite <-IHn by (rewrite cons_length in *; omega).
    reflexivity.
Qed.

Lemma firstn_all_strong : forall {A} (xs : list A) n, (length xs <= n)%nat ->
  firstn n xs = xs.
Proof.
  induction xs; intros; try apply firstn_nil.
  destruct n;
    match goal with H : (length (_ :: _)  <= _)%nat |- _ =>
      simpl in H; try omega end.
  simpl.
  f_equal.
  apply IHxs.
  omega.
Qed.

Lemma update_nth_out_of_bounds : forall {A} n f xs, n >= length xs -> @update_nth A n f xs = xs.
Proof.
  induction n; destruct xs; simpl; try congruence; try omega; intros.
  rewrite IHn by omega; reflexivity.
Qed.

Hint Rewrite @update_nth_out_of_bounds using omega : simpl_update_nth.


Lemma update_nth_nth_default_full : forall {A} (d:A) n f l i,
  nth_default d (update_nth n f l) i =
  if lt_dec i (length l) then
    if (eq_nat_dec i n) then f (nth_default d l i)
    else nth_default d l i
  else d.
Proof.
  induction n; (destruct l; simpl in *; [ intros; destruct i; simpl; try reflexivity; omega | ]);
    intros; repeat break_if; subst; try destruct i;
      repeat first [ progress break_if
                   | progress subst
                   | progress boring
                   | progress autorewrite with simpl_nth_default
                   | omega ].
Qed.

Hint Rewrite @update_nth_nth_default_full : push_nth_default.

Lemma update_nth_nth_default : forall {A} (d:A) n f l i, (0 <= i < length l)%nat ->
  nth_default d (update_nth n f l) i =
  if (eq_nat_dec i n) then f (nth_default d l i) else nth_default d l i.
Proof. intros; rewrite update_nth_nth_default_full; repeat break_if; boring. Qed.

Hint Rewrite @update_nth_nth_default using (omega || distr_length; omega) : push_nth_default.

Lemma set_nth_nth_default_full : forall {A} (d:A) n v l i,
  nth_default d (set_nth n v l) i =
  if lt_dec i (length l) then
    if (eq_nat_dec i n) then v
    else nth_default d l i
  else d.
Proof. intros; apply update_nth_nth_default_full; assumption. Qed.

Hint Rewrite @set_nth_nth_default_full : push_nth_default.

Lemma set_nth_nth_default : forall {A} (d:A) n x l i, (0 <= i < length l)%nat ->
  nth_default d (set_nth n x l) i =
  if (eq_nat_dec i n) then x else nth_default d l i.
Proof. intros; apply update_nth_nth_default; assumption. Qed.

Hint Rewrite @set_nth_nth_default using (omega || distr_length; omega) : push_nth_default.

Lemma nth_default_preserves_properties : forall {A} (P : A -> Prop) l n d,
  (forall x, In x l -> P x) -> P d -> P (nth_default d l n).
Proof.
  intros; rewrite nth_default_eq.
  destruct (nth_in_or_default n l d); auto.
  congruence.
Qed.

Lemma nth_default_preserves_properties_length_dep :
  forall {A} (P : A -> Prop) l n d,
  (forall x, In x l -> n < (length l) -> P x) -> ((~ n < length l) -> P d) -> P (nth_default d l n).
Proof.
  intros.
  destruct (lt_dec n (length l)).
  + rewrite nth_default_eq; auto using nth_In.
  + rewrite nth_default_out_of_bounds by omega.
    auto.
Qed.

Lemma nth_error_first : forall {T} (a b : T) l,
  nth_error (a :: l) 0 = Some b -> a = b.
Proof.
  intros; simpl in *.
  unfold value in *.
  congruence.
Qed.

Lemma nth_error_exists_first : forall {T} l (x : T) (H : nth_error l 0 = Some x),
  exists l', l = x :: l'.
Proof.
  induction l; try discriminate; eexists.
  apply nth_error_first in H.
  subst; eauto.
Qed.

Lemma list_elementwise_eq : forall {T} (l1 l2 : list T),
  (forall i, nth_error l1 i = nth_error l2 i) -> l1 = l2.
Proof.
  induction l1, l2; intros; try reflexivity;
    pose proof (H 0%nat) as Hfirst; simpl in Hfirst; inversion Hfirst.
  f_equal.
  apply IHl1.
  intros i; specialize (H (S i)).
  boring.
Qed.

Lemma sum_firstn_all_succ : forall n l, (length l <= n)%nat ->
  sum_firstn l (S n) = sum_firstn l n.
Proof.
  unfold sum_firstn; intros.
  rewrite !firstn_all_strong by omega.
  congruence.
Qed.

Hint Rewrite @sum_firstn_all_succ using omega : simpl_sum_firstn.

Lemma sum_firstn_succ_default : forall l i,
  sum_firstn l (S i) = (nth_default 0 l i + sum_firstn l i)%Z.
Proof.
  unfold sum_firstn; induction l, i;
    intros; autorewrite with simpl_nth_default simpl_firstn simpl_fold_right in *;
      try reflexivity.
  rewrite IHl; omega.
Qed.

Hint Rewrite @sum_firstn_succ_default : simpl_sum_firstn.

Lemma sum_firstn_0 : forall xs,
  sum_firstn xs 0 = 0%Z.
Proof.
  destruct xs; reflexivity.
Qed.

Hint Rewrite @sum_firstn_0 : simpl_sum_firstn.

Lemma sum_firstn_succ : forall l i x,
  nth_error l i = Some x ->
  sum_firstn l (S i) = (x + sum_firstn l i)%Z.
Proof.
  intros; rewrite sum_firstn_succ_default.
  erewrite nth_error_value_eq_nth_default by eassumption; reflexivity.
Qed.

Hint Rewrite @sum_firstn_succ using congruence : simpl_sum_firstn.

Lemma sum_firstn_succ_cons : forall x xs i,
  sum_firstn (x :: xs) (S i) = (x + sum_firstn xs i)%Z.
Proof.
  unfold sum_firstn; simpl; reflexivity.
Qed.

Hint Rewrite @sum_firstn_succ_cons : simpl_sum_firstn.

Lemma sum_firstn_nil : forall i,
  sum_firstn nil i = 0%Z.
Proof. destruct i; reflexivity. Qed.

Hint Rewrite @sum_firstn_nil : simpl_sum_firstn.

Lemma sum_firstn_succ_default_rev : forall l i,
  sum_firstn l i = (sum_firstn l (S i) - nth_default 0 l i)%Z.
Proof.
  intros; rewrite sum_firstn_succ_default; omega.
Qed.

Lemma sum_firstn_succ_rev : forall l i x,
  nth_error l i = Some x ->
  sum_firstn l i = (sum_firstn l (S i) - x)%Z.
Proof.
  intros; erewrite sum_firstn_succ by eassumption; omega.
Qed.

Lemma sum_firstn_nonnegative : forall n l, (forall x, In x l -> 0 <= x)%Z
                                       -> (0 <= sum_firstn l n)%Z.
Proof.
  induction n as [|n IHn]; destruct l as [|? l]; autorewrite with simpl_sum_firstn; simpl; try omega.
  { specialize (IHn l).
    destruct n; simpl; autorewrite with simpl_sum_firstn simpl_nth_default in *;
      intuition auto with zarith. }
Qed.

Hint Resolve sum_firstn_nonnegative : znonzero.

Lemma nth_default_map2 : forall {A B C} (f : A -> B -> C) ls1 ls2 i d d1 d2,
  nth_default d (map2 f ls1 ls2) i =
    if lt_dec i (min (length ls1) (length ls2))
    then f (nth_default d1 ls1 i) (nth_default d2 ls2 i)
    else d.
Proof.
  induction ls1, ls2.
  + cbv [map2 length min].
    intros.
    break_if; try omega.
    apply nth_default_nil.
  + cbv [map2 length min].
    intros.
    break_if; try omega.
    apply nth_default_nil.
  + cbv [map2 length min].
    intros.
    break_if; try omega.
    apply nth_default_nil.
  + simpl.
    destruct i.
    - intros. rewrite !nth_default_cons.
      break_if; auto; omega.
    - intros. rewrite !nth_default_cons_S.
      rewrite IHls1 with (d1 := d1) (d2 := d2).
      repeat break_if; auto; omega.
Qed.

Lemma map2_cons : forall A B C (f : A -> B -> C) ls1 ls2 a b,
  map2 f (a :: ls1) (b :: ls2) = f a b :: map2 f ls1 ls2.
Proof.
  reflexivity.
Qed.

Lemma map2_nil_l : forall A B C (f : A -> B -> C) ls2,
  map2 f nil ls2 = nil.
Proof.
  reflexivity.
Qed.

Lemma map2_nil_r : forall A B C (f : A -> B -> C) ls1,
  map2 f ls1 nil = nil.
Proof.
  destruct ls1; reflexivity.
Qed.
Local Hint Resolve map2_nil_r map2_nil_l.

Opaque map2.

Lemma map2_length : forall A B C (f : A -> B -> C) ls1 ls2,
  length (map2 f ls1 ls2) = min (length ls1) (length ls2).
Proof.
  induction ls1, ls2; intros; try solve [cbv; auto].
  rewrite map2_cons, !length_cons, IHls1.
  auto.
Qed.

Ltac simpl_list_lengths := repeat match goal with
  | H : appcontext[length (@nil ?A)] |- _ => rewrite (@nil_length0 A) in H
  | H : appcontext[length (_ :: _)] |- _ => rewrite length_cons in H
  | |- appcontext[length (@nil ?A)] => rewrite (@nil_length0 A)
  | |- appcontext[length (_ :: _)] => rewrite length_cons
  end.

Lemma map2_app : forall A B C (f : A -> B -> C) ls1 ls2 ls1' ls2',
  (length ls1 = length ls2) ->
  map2 f (ls1 ++ ls1') (ls2 ++ ls2') = map2 f ls1 ls2 ++ map2 f ls1' ls2'.
Proof.
  induction ls1, ls2; intros; rewrite ?map2_nil_r, ?app_nil_l; try congruence;
    simpl_list_lengths; try omega.
  rewrite <-!app_comm_cons, !map2_cons.
  rewrite IHls1; auto.
Qed.

Lemma firstn_update_nth {A}
  : forall f m n (xs : list A), firstn m (update_nth n f xs) = update_nth n f (firstn m xs).
Proof.
  induction m; destruct n, xs;
    autorewrite with simpl_firstn simpl_update_nth;
    congruence.
Qed.

Hint Rewrite @firstn_update_nth : push_firstn.
Hint Rewrite @firstn_update_nth : pull_update_nth.
Hint Rewrite <- @firstn_update_nth : pull_firstn.
Hint Rewrite <- @firstn_update_nth : push_update_nth.

Require Import Coq.Lists.SetoidList.
Global Instance Proper_nth_default : forall A eq,
  Proper (eq==>eqlistA eq==>Logic.eq==>eq) (nth_default (A:=A)).
Proof.
  do 5 intro; subst; induction 1.
  + repeat intro; rewrite !nth_default_nil; assumption.
  + repeat intro; subst; destruct y0; rewrite ?nth_default_cons, ?nth_default_cons_S; auto.
Qed.