aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ListUtil.v
blob: f709e7dd13c18c8219166bbb766387bd1e601629 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
Require Import Coq.Lists.List.
Require Import Coq.omega.Omega Lia.
Require Import Coq.Arith.Peano_dec.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.Pointed.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Decidable.
Require Export Crypto.Util.FixCoqMistakes.
Require Export Crypto.Util.Tactics.BreakMatch.
Require Export Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.RewriteHyp.

Scheme Equality for list.

Definition list_case
           {A} (P : list A -> Type) (N : P nil) (C : forall x xs, P (cons x xs))
           (ls : list A)
  : P ls
  := match ls return P ls with
     | nil => N
     | cons x xs => C x xs
     end.

Global Instance list_rect_Proper_dep_gen {A P} (RP : forall x : list A, P x -> P x -> Prop)
  : Proper (RP nil ==> forall_relation (fun x => forall_relation (fun xs => RP xs ==> RP (cons x xs))) ==> forall_relation RP) (@list_rect A P) | 10.
Proof.
  cbv [forall_relation respectful]; intros N N' HN C C' HC ls.
  induction ls as [|l ls IHls]; cbn [list_rect];
    repeat first [ apply IHls | apply HC | apply HN | progress intros | reflexivity ].
Qed.
Global Instance list_rect_Proper_dep {A P} : Proper (eq ==> forall_relation (fun _ => forall_relation (fun _ => forall_relation (fun _ => eq))) ==> forall_relation (fun _ => eq)) (@list_rect A P) | 1.
Proof.
  cbv [forall_relation respectful Proper]; intros; eapply (@list_rect_Proper_dep_gen A P (fun _ => eq)); cbv [forall_relation respectful]; intros; subst; eauto.
Qed.
Global Instance list_rect_arrow_Proper_dep {A P Q} : Proper ((eq ==> eq) ==> forall_relation (fun _ => forall_relation (fun _ => (eq ==> eq) ==> (eq ==> eq))) ==> forall_relation (fun _ => eq ==> eq)) (@list_rect A (fun x => P x -> Q x)) | 10.
Proof.
  cbv [forall_relation respectful Proper]; intros; eapply (@list_rect_Proper_dep_gen A (fun x => P x -> Q x) (fun _ => eq ==> eq)%signature); intros; subst; eauto.
Qed.
Global Instance list_case_Proper_dep {A P} : Proper (eq ==> forall_relation (fun _ => forall_relation (fun _ => eq)) ==> forall_relation (fun _ => eq)) (@list_case A P) | 1.
Proof.
  cbv [forall_relation]; intros N N' ? C C' HC ls; subst N'; revert N; destruct ls; eauto.
Qed.
Global Instance list_rect_Proper_gen {A P} R
  : Proper (R ==> (eq ==> eq ==> R ==> R) ==> eq ==> R) (@list_rect A (fun _ => P)) | 10.
Proof. repeat intro; subst; apply (@list_rect_Proper_dep_gen A (fun _ => P) (fun _ => R)); cbv [forall_relation respectful] in *; eauto. Qed.
Global Instance list_rect_Proper {A P} : Proper (eq ==> pointwise_relation _ (pointwise_relation _ (pointwise_relation _ eq)) ==> eq ==> eq) (@list_rect A (fun _ => P)).
Proof. repeat intro; subst; apply (@list_rect_Proper_dep A (fun _ => P)); eauto. Qed.
Global Instance list_rect_arrow_Proper {A P Q}
  : Proper ((eq ==> eq) ==> (eq ==> eq ==> (eq ==> eq) ==> eq ==> eq) ==> eq ==> eq ==> eq)
           (@list_rect A (fun _ => P -> Q)) | 10.
Proof. eapply list_rect_Proper_gen. Qed.
Global Instance list_case_Proper {A P} : Proper (eq ==> pointwise_relation _ (pointwise_relation _ eq) ==> eq ==> eq) (@list_case A (fun _ => P)).
Proof. repeat intro; subst; apply (@list_case_Proper_dep A (fun _ => P)); eauto. Qed.

Create HintDb distr_length discriminated.
Create HintDb simpl_set_nth discriminated.
Create HintDb simpl_update_nth discriminated.
Create HintDb simpl_nth_default discriminated.
Create HintDb simpl_nth_error discriminated.
Create HintDb simpl_firstn discriminated.
Create HintDb simpl_skipn discriminated.
Create HintDb simpl_fold_right discriminated.
Create HintDb simpl_sum_firstn discriminated.
Create HintDb push_map discriminated.
Create HintDb push_combine discriminated.
Create HintDb push_flat_map discriminated.
Create HintDb push_fold_right discriminated.
Create HintDb push_partition discriminated.
Create HintDb pull_nth_error discriminated.
Create HintDb push_nth_error discriminated.
Create HintDb pull_nth_default discriminated.
Create HintDb push_nth_default discriminated.
Create HintDb pull_firstn discriminated.
Create HintDb push_firstn discriminated.
Create HintDb pull_skipn discriminated.
Create HintDb push_skipn discriminated.
Create HintDb push_sum discriminated.
Create HintDb pull_update_nth discriminated.
Create HintDb push_update_nth discriminated.
Create HintDb znonzero discriminated.

Hint Rewrite
  @app_length
  @rev_length
  @map_length
  @seq_length
  @fold_left_length
  @split_length_l
  @split_length_r
  @firstn_length
  @combine_length
  @prod_length
  : distr_length.

Hint Extern 1 => progress autorewrite with distr_length in * : distr_length.
Ltac distr_length := autorewrite with distr_length in *;
  try solve [simpl in *; omega].

Module Export List.
  Local Set Implicit Arguments.
  Import ListNotations.
  (** From the 8.6 Standard Library *)

  Section Elts.
    Variable A : Type.

    (** Results about [nth_error] *)

    Lemma nth_error_In l n (x : A) : nth_error l n = Some x -> In x l.
    Proof using Type.
      revert n. induction l as [|a l IH]; intros [|n]; simpl; try easy.
      - injection 1; auto.
      - eauto.
    Qed.
  End Elts.

  Section Map.
    Variables (A : Type) (B : Type).
    Variable f : A -> B.

    Lemma map_nil : forall A B (f : A -> B), map f nil = nil.
    Proof. reflexivity. Qed.
    Lemma map_cons (x:A)(l:list A) : map f (x::l) = (f x) :: (map f l).
    Proof using Type.
      reflexivity.
    Qed.
    Lemma map_repeat x n : map f (List.repeat x n) = List.repeat (f x) n.
    Proof. induction n; simpl List.repeat; simpl map; congruence. Qed.
  End Map.
  Hint Rewrite @map_cons @map_nil @map_repeat : push_map.
  Hint Rewrite @map_app : push_map.

  Section FlatMap.
    Lemma flat_map_nil {A B} (f:A->list B) : List.flat_map f (@nil A) = nil.
    Proof. reflexivity. Qed.
    Lemma flat_map_cons {A B} (f:A->list B) x xs :
      (List.flat_map f (x::xs) = (f x++List.flat_map f xs))%list.
    Proof. reflexivity. Qed.
  End FlatMap.
  Hint Rewrite @flat_map_cons @flat_map_nil : push_flat_map.

  Lemma rev_cons {A} x ls : @rev A (x :: ls) = rev ls ++ [x]. Proof. reflexivity. Qed.
  Hint Rewrite @rev_cons : list.

  Section FoldRight.
    Context {A B} (f:B->A->A).
    Lemma fold_right_nil : forall {A B} (f:B->A->A) a,
        List.fold_right f a nil = a.
    Proof. reflexivity. Qed.
    Lemma fold_right_cons : forall a b bs,
      fold_right f a (b::bs) = f b (fold_right f a bs).
    Proof. reflexivity. Qed.
    Lemma fold_right_snoc a x ls:
      @fold_right A B f a (ls ++ [x]) = fold_right f (f x a) ls.
    Proof.
      rewrite <-(rev_involutive ls), <-rev_cons.
      rewrite !fold_left_rev_right; reflexivity.
    Qed.
  End FoldRight.
  Hint Rewrite @fold_right_nil @fold_right_cons @fold_right_snoc : simpl_fold_right push_fold_right.

  Section Partition.
    Lemma partition_nil {A} (f:A->_) : partition f nil = (nil, nil).
    Proof. reflexivity.                                         Qed.
    Lemma partition_cons {A} (f:A->_) x xs : partition f (x::xs) =
                                             if f x
                                             then (x :: (fst (partition f xs)), (snd (partition f xs)))
                                             else ((fst (partition f xs)), x :: (snd (partition f xs))).
    Proof. cbv [partition]; break_match; reflexivity.           Qed.
  End Partition.
  Hint Rewrite @partition_nil @partition_cons : push_partition.

  Lemma in_seq len start n :
    In n (seq start len) <-> start <= n < start+len.
  Proof.
   revert start. induction len as [|len IHlen]; simpl; intros.
   - rewrite <- plus_n_O. split;[easy|].
     intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')).
   - rewrite IHlen, <- plus_n_Sm; simpl; split.
     * intros [H|H]; subst; intuition auto with arith.
     * intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H); intuition.
  Qed.

  Section Facts.

    Variable A : Type.

    Theorem length_zero_iff_nil (l : list A):
      length l = 0 <-> l=[].
    Proof using Type.
      split; [now destruct l | now intros ->].
    Qed.
  End Facts.

  Section Cutting.

    Variable A : Type.

    Local Notation firstn := (@firstn A).

    Lemma firstn_nil n: firstn n [] = [].
    Proof using Type. induction n; now simpl. Qed.

    Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l).
    Proof using Type. now simpl. Qed.

    Lemma firstn_all l: firstn (length l) l = l.
    Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed.

    Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l.
    Proof using Type. induction n as [|k iHk].
           - intro l. inversion 1 as [H1|?].
             rewrite (length_zero_iff_nil l) in H1. subst. now simpl.
           - destruct l as [|x xs]; simpl.
             * now reflexivity.
             * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H.
    Qed.

    Lemma firstn_O l: firstn 0 l = [].
    Proof using Type. now simpl. Qed.

    Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n.
    Proof using Type.
      induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl].
      - auto with arith.
      - apply le_n_S, iHk.
    Qed.

    Lemma firstn_length_le: forall l:list A, forall n:nat,
          n <= length l -> length (firstn n l) = n.
    Proof using Type. induction l as [|x xs Hrec].
           - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl.
           - destruct n as [|n].
             * now simpl.
             * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H).
    Qed.

    Lemma firstn_app n:
      forall l1 l2,
        firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2).
    Proof using Type. induction n as [|k iHk]; intros l1 l2.
           - now simpl.
           - destruct l1 as [|x xs].
             * unfold List.firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O.
             * rewrite <- app_comm_cons. simpl. f_equal. apply iHk.
    Qed.

    Lemma firstn_app_2 n:
      forall l1 l2,
        firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2.
    Proof using Type. induction n as [| k iHk];intros l1 l2.
           - unfold List.firstn at 2. rewrite <- plus_n_O, app_nil_r.
             rewrite firstn_app. rewrite <- minus_diag_reverse.
             unfold List.firstn at 2. rewrite app_nil_r. apply firstn_all.
           - destruct l2 as [|x xs].
             * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith.
             * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k).
               auto with arith.
               rewrite H0, firstn_all2; [reflexivity | auto with arith].
    Qed.

    Lemma firstn_firstn:
      forall l:list A,
      forall i j : nat,
        firstn i (firstn j l) = firstn (min i j) l.
    Proof. induction l as [|x xs Hl].
           - intros. simpl. now rewrite ?firstn_nil.
           - destruct i.
             * intro. now simpl.
             * destruct j.
             + now simpl.
             + simpl. f_equal. apply Hl.
    Qed.

  End Cutting.

End List.

Hint Rewrite @firstn_skipn : simpl_firstn.
Hint Rewrite @firstn_skipn : simpl_skipn.
Hint Rewrite @firstn_nil @firstn_cons @List.firstn_all @firstn_O @firstn_app_2 @List.firstn_firstn : push_firstn.
Hint Rewrite @firstn_nil @firstn_cons @List.firstn_all @firstn_O @firstn_app_2 @List.firstn_firstn : simpl_firstn.
Hint Rewrite @firstn_app : push_firstn.
Hint Rewrite <- @firstn_cons @firstn_app @List.firstn_firstn : pull_firstn.
Hint Rewrite @firstn_all2 @removelast_firstn @firstn_removelast using omega : push_firstn.
Hint Rewrite @firstn_all2 @removelast_firstn @firstn_removelast using omega : simpl_firstn.

Local Arguments value / _ _.
Local Arguments error / _.

Definition sum_firstn l n := fold_right Z.add 0%Z (firstn n l).

Definition sum xs := sum_firstn xs (length xs).

Section map2.
  Context {A B C}
          (f : A -> B -> C).

  Fixpoint map2 (la : list A) (lb : list B) : list C :=
    match la, lb with
    | nil, _ => nil
    | _, nil => nil
    | a :: la', b :: lb'
      => f a b :: map2 la' lb'
    end.
End map2.

(* xs[n] := f xs[n] *)
Fixpoint update_nth {T} n f (xs:list T) {struct n} :=
	match n with
	| O => match xs with
				 | nil => nil
				 | x'::xs' => f x'::xs'
				 end
	| S n' =>  match xs with
				 | nil => nil
				 | x'::xs' => x'::update_nth n' f xs'
				 end
  end.

(* xs[n] := x *)
Definition set_nth {T} n x (xs:list T)
  := update_nth n (fun _ => x) xs.

Definition splice_nth {T} n (x:T) xs := firstn n xs ++ x :: skipn (S n) xs.
Hint Unfold splice_nth.

Fixpoint take_while {T} (f : T -> bool) (ls : list T) : list T
  := match ls with
     | nil => nil
     | cons x xs => if f x then x :: @take_while T f xs else nil
     end.

Fixpoint drop_while {T} (f : T -> bool) (ls : list T) : list T
  := match ls with
     | nil => nil
     | cons x xs => if f x then @drop_while T f xs else x :: xs
     end.

Ltac boring :=
  simpl; intuition auto with zarith datatypes;
  repeat match goal with
           | [ H : _ |- _ ] => rewrite H; clear H
           | [ |- context[match ?pf with end] ] => solve [ case pf ]
           | _ => progress autounfold in *
           | _ => progress autorewrite with core
           | _ => progress simpl in *
           | _ => progress intuition auto with zarith datatypes
         end; eauto.

Ltac boring_list :=
  repeat match goal with
         | _ => progress boring
         | _ => progress autorewrite with distr_length simpl_nth_default simpl_update_nth simpl_set_nth simpl_nth_error in *
         end.

Lemma nth_default_cons : forall {T} (x u0 : T) us, nth_default x (u0 :: us) 0 = u0.
Proof. auto. Qed.

Hint Rewrite @nth_default_cons : simpl_nth_default.
Hint Rewrite @nth_default_cons : push_nth_default.

Lemma nth_default_cons_S : forall {A} us (u0 : A) n d,
  nth_default d (u0 :: us) (S n) = nth_default d us n.
Proof. boring. Qed.

Hint Rewrite @nth_default_cons_S : simpl_nth_default.
Hint Rewrite @nth_default_cons_S : push_nth_default.

Lemma nth_default_nil : forall {T} n (d : T), nth_default d nil n = d.
Proof. induction n; boring. Qed.

Hint Rewrite @nth_default_nil : simpl_nth_default.
Hint Rewrite @nth_default_nil : push_nth_default.

Lemma nth_error_nil_error : forall {A} n, nth_error (@nil A) n = None.
Proof. induction n; boring. Qed.

Hint Rewrite @nth_error_nil_error : simpl_nth_error.

Ltac nth_tac' :=
  intros; simpl in *; unfold error,value in *; repeat progress (match goal with
    | [  |- context[nth_error nil ?n] ] => rewrite nth_error_nil_error
    | [ H: ?x = Some _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [ H: ?x = None _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] => case_eq (nth_error xs i); intros
    | [ |- context[(if lt_dec ?a ?b then _ else _) = _] ] => destruct (lt_dec a b)
    | [ |- context[_ = (if lt_dec ?a ?b then _ else _)] ] => destruct (lt_dec a b)
    | [ H: context[(if lt_dec ?a ?b then _ else _) = _] |- _ ] => destruct (lt_dec a b)
    | [ H: context[_ = (if lt_dec ?a ?b then _ else _)] |- _ ] => destruct (lt_dec a b)
    | [ H: _ /\ _ |- _ ] => destruct H
    | [ H: Some _ = Some _ |- _ ] => injection H; clear H; intros; subst
    | [ H: None = Some _  |- _ ] => inversion H
    | [ H: Some _ = None |- _ ] => inversion H
    | [ |- Some _ = Some _ ] => apply f_equal
  end); eauto; try (autorewrite with list in *); try omega; eauto.
Lemma nth_error_map : forall A B (f:A->B) i xs y,
  nth_error (map f xs) i = Some y ->
  exists x, nth_error xs i = Some x /\ f x = y.
Proof.
  induction i; destruct xs; nth_tac'.
Qed.

Lemma nth_error_seq : forall i start len,
  nth_error (seq start len) i =
  if lt_dec i len
  then Some (start + i)
  else None.
  induction i as [|? IHi]; destruct len; nth_tac'; erewrite IHi; nth_tac'.
Qed.

Lemma nth_error_error_length : forall A i (xs:list A), nth_error xs i = None ->
  i >= length xs.
Proof.
  induction i as [|? IHi]; destruct xs; nth_tac'; try match goal with H : _ |- _ => specialize (IHi _ H) end; omega.
Qed.

Lemma nth_error_value_length : forall A i (xs:list A) x, nth_error xs i = Some x ->
  i < length xs.
Proof.
  induction i as [|? IHi]; destruct xs; nth_tac'; try match goal with H : _ |- _ => specialize (IHi _ _ H) end; omega.
Qed.

Lemma nth_error_length_error : forall A i (xs:list A),
  i >= length xs ->
  nth_error xs i = None.
Proof.
  induction i as [|? IHi]; destruct xs; nth_tac'; rewrite IHi by omega; auto.
Qed.
Hint Resolve nth_error_length_error.
Hint Rewrite @nth_error_length_error using omega : simpl_nth_error.

Lemma map_nth_default : forall (A B : Type) (f : A -> B) n x y l,
  (n < length l) -> nth_default y (map f l) n = f (nth_default x l n).
Proof.
  intros A B f n x y l H.
  unfold nth_default.
  erewrite map_nth_error.
  reflexivity.
  nth_tac'.
  let H0 := match goal with H0 : _ = None |- _ => H0 end in
  pose proof (nth_error_error_length A n l H0).
  omega.
Qed.

Hint Rewrite @map_nth_default using omega : push_nth_default.

Ltac nth_tac :=
  repeat progress (try nth_tac'; try (match goal with
    | [ H: nth_error (map _ _) _ = Some _ |- _ ] => destruct (nth_error_map _ _ _ _ _ _ H); clear H
    | [ H: nth_error (seq _ _) _ = Some _ |- _ ] => rewrite nth_error_seq in H
    | [H: nth_error _ _ = None |- _ ] => specialize (nth_error_error_length _ _ _ H); intro; clear H
  end)).

Lemma app_cons_app_app : forall T xs (y:T) ys, xs ++ y :: ys = (xs ++ (y::nil)) ++ ys.
Proof. induction xs; boring. Qed.

Lemma unfold_set_nth {T} n x
  : forall xs,
    @set_nth T n x xs
    = match n with
      | O => match xs with
	     | nil => nil
	     | x'::xs' => x::xs'
	     end
      | S n' =>  match xs with
		 | nil => nil
		 | x'::xs' => x'::set_nth n' x xs'
		 end
      end.
Proof.
  induction n; destruct xs; reflexivity.
Qed.

Lemma simpl_set_nth_0 {T} x
  : forall xs,
    @set_nth T 0 x xs
    = match xs with
      | nil => nil
      | x'::xs' => x::xs'
      end.
Proof. intro; rewrite unfold_set_nth; reflexivity. Qed.

Lemma simpl_set_nth_S {T} x n
  : forall xs,
    @set_nth T (S n) x xs
    = match xs with
      | nil => nil
      | x'::xs' => x'::set_nth n x xs'
      end.
Proof. intro; rewrite unfold_set_nth; reflexivity. Qed.

Hint Rewrite @simpl_set_nth_S @simpl_set_nth_0 : simpl_set_nth.

Lemma update_nth_ext {T} f g n
  : forall xs, (forall x, nth_error xs n = Some x -> f x = g x)
               -> @update_nth T n f xs = @update_nth T n g xs.
Proof.
  induction n as [|n IHn]; destruct xs; simpl; intros H;
    try rewrite IHn; try rewrite H;
      try congruence; trivial.
Qed.

Global Instance update_nth_Proper {T}
  : Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@update_nth T).
Proof. repeat intro; subst; apply update_nth_ext; trivial. Qed.

Global Instance update_nth_Proper_eq {A} : Proper (eq ==> (eq ==> eq) ==> eq ==> eq) (@update_nth A) | 1.
Proof. repeat intro; subst; apply update_nth_Proper; repeat intro; eauto. Qed.

Lemma update_nth_id_eq_specific {T} f n
  : forall (xs : list T) (H : forall x, nth_error xs n = Some x -> f x = x),
    update_nth n f xs = xs.
Proof.
  induction n as [|n IHn]; destruct xs; simpl; intros H;
    try rewrite IHn; try rewrite H; unfold value in *;
      try congruence; assumption.
Qed.

Hint Rewrite @update_nth_id_eq_specific using congruence : simpl_update_nth.

Lemma update_nth_id_eq : forall {T} f (H : forall x, f x = x) n (xs : list T),
    update_nth n f xs = xs.
Proof. intros; apply update_nth_id_eq_specific; trivial. Qed.

Hint Rewrite @update_nth_id_eq using congruence : simpl_update_nth.

Lemma update_nth_id : forall {T} n (xs : list T),
    update_nth n (fun x => x) xs = xs.
Proof. intros; apply update_nth_id_eq; trivial. Qed.

Hint Rewrite @update_nth_id : simpl_update_nth.

Lemma nth_update_nth : forall m {T} (xs:list T) (n:nat) (f:T -> T),
  nth_error (update_nth m f xs) n =
  if eq_nat_dec n m
  then option_map f (nth_error xs n)
  else nth_error xs n.
Proof.
  induction m as [|? IHm].
  { destruct n, xs; auto. }
  { destruct xs, n; intros; simpl; auto;
      [ | rewrite IHm ]; clear IHm;
        edestruct eq_nat_dec; reflexivity. }
Qed.

Hint Rewrite @nth_update_nth : push_nth_error.
Hint Rewrite <- @nth_update_nth : pull_nth_error.

Lemma length_update_nth : forall {T} i f (xs:list T), length (update_nth i f xs) = length xs.
Proof.
  induction i, xs; boring.
Qed.

Hint Rewrite @length_update_nth : distr_length.

Lemma nth_set_nth : forall m {T} (xs:list T) (n:nat) x,
  nth_error (set_nth m x xs) n =
  if eq_nat_dec n m
  then (if lt_dec n (length xs) then Some x else None)
  else nth_error xs n.
Proof.
  intros m T xs n x; unfold set_nth; rewrite nth_update_nth.
  destruct (nth_error xs n) eqn:?, (lt_dec n (length xs)) as [p|p];
    rewrite <- nth_error_Some in p;
    solve [ reflexivity
          | exfalso; apply p; congruence ].
Qed.

Hint Rewrite @nth_set_nth : push_nth_error.

Lemma length_set_nth : forall {T} i x (xs:list T), length (set_nth i x xs) = length xs.
Proof. intros; apply length_update_nth. Qed.

Hint Rewrite @length_set_nth : distr_length.

Lemma nth_error_length_exists_value : forall {A} (i : nat) (xs : list A),
  (i < length xs)%nat -> exists x, nth_error xs i = Some x.
Proof.
  induction i, xs; boring; try omega.
Qed.

Lemma nth_error_length_not_error : forall {A} (i : nat) (xs : list A),
  nth_error xs i = None -> (i < length xs)%nat -> False.
Proof.
  intros A i xs H H0.
  destruct (nth_error_length_exists_value i xs); intuition; congruence.
Qed.

Lemma nth_error_value_eq_nth_default : forall {T} i (x : T) xs,
  nth_error xs i = Some x -> forall d, nth_default d xs i = x.
Proof.
  unfold nth_default; boring.
Qed.

Hint Rewrite @nth_error_value_eq_nth_default using eassumption : simpl_nth_default.

Lemma skipn0 : forall {T} (xs:list T), skipn 0 xs = xs.
Proof. auto. Qed.

Lemma destruct_repeat : forall {A} xs y, (forall x : A, In x xs -> x = y) ->
  xs = nil \/ exists xs', xs = y :: xs' /\ (forall x : A, In x xs' -> x = y).
Proof.
  destruct xs as [|? xs]; intros; try tauto.
  right.
  exists xs; split.
  + f_equal; auto using in_eq.
  + intros; auto using in_cons.
Qed.

Lemma splice_nth_equiv_update_nth : forall {T} n f d (xs:list T),
  splice_nth n (f (nth_default d xs n)) xs =
  if lt_dec n (length xs)
  then update_nth n f xs
  else xs ++ (f d)::nil.
Proof.
  induction n, xs; boring_list; break_match; auto; omega.
Qed.

Lemma splice_nth_equiv_update_nth_update : forall {T} n f d (xs:list T),
  n < length xs ->
  splice_nth n (f (nth_default d xs n)) xs = update_nth n f xs.
Proof.
  intros.
  rewrite splice_nth_equiv_update_nth; break_match; auto; omega.
Qed.

Lemma splice_nth_equiv_update_nth_snoc : forall {T} n f d (xs:list T),
  n >= length xs ->
  splice_nth n (f (nth_default d xs n)) xs = xs ++ (f d)::nil.
Proof.
  intros.
  rewrite splice_nth_equiv_update_nth; break_match; auto; omega.
Qed.

Definition IMPOSSIBLE {T} : list T. exact nil. Qed.

Ltac remove_nth_error :=
  repeat match goal with
         | _ => exfalso; solve [ eauto using @nth_error_length_not_error ]
         | [ |- context[match nth_error ?ls ?n with _ => _ end] ]
           => destruct (nth_error ls n) eqn:?
         end.

Lemma update_nth_equiv_splice_nth: forall {T} n f (xs:list T),
  update_nth n f xs =
  if lt_dec n (length xs)
  then match nth_error xs n with
       | Some v => splice_nth n (f v) xs
       | None => IMPOSSIBLE
       end
  else xs.
Proof.
  induction n as [|? IHn]; destruct xs; intros;
    autorewrite with simpl_update_nth simpl_nth_default in *; simpl in *;
      try (erewrite IHn; clear IHn); auto.
  repeat break_match; remove_nth_error; try reflexivity; try omega.
Qed.

Lemma splice_nth_equiv_set_nth : forall {T} n x (xs:list T),
  splice_nth n x xs =
  if lt_dec n (length xs)
  then set_nth n x xs
  else xs ++ x::nil.
Proof. intros T n x xs; rewrite splice_nth_equiv_update_nth with (f := fun _ => x); auto. Qed.

Lemma splice_nth_equiv_set_nth_set : forall {T} n x (xs:list T),
  n < length xs ->
  splice_nth n x xs = set_nth n x xs.
Proof. intros T n x xs H; rewrite splice_nth_equiv_update_nth_update with (f := fun _ => x); auto. Qed.

Lemma splice_nth_equiv_set_nth_snoc : forall {T} n x (xs:list T),
  n >= length xs ->
  splice_nth n x xs = xs ++ x::nil.
Proof. intros T n x xs H; rewrite splice_nth_equiv_update_nth_snoc with (f := fun _ => x); auto. Qed.

Lemma set_nth_equiv_splice_nth: forall {T} n x (xs:list T),
  set_nth n x xs =
  if lt_dec n (length xs)
  then splice_nth n x xs
  else xs.
Proof.
  intros T n x xs; unfold set_nth; rewrite update_nth_equiv_splice_nth with (f := fun _ => x); auto.
  repeat break_match; remove_nth_error; trivial.
Qed.

Lemma combine_update_nth : forall {A B} n f g (xs:list A) (ys:list B),
  combine (update_nth n f xs) (update_nth n g ys) =
  update_nth n (fun xy => (f (fst xy), g (snd xy))) (combine xs ys).
Proof.
  induction n as [|? IHn]; destruct xs, ys; simpl; try rewrite IHn; reflexivity.
Qed.

(* grumble, grumble, [rewrite] is bad at inferring the identity function, and constant functions *)
Ltac rewrite_rev_combine_update_nth :=
  let lem := match goal with
             | [ |- context[update_nth ?n (fun xy => (@?f xy, @?g xy)) (combine ?xs ?ys)] ]
               => let f := match (eval cbv [fst] in (fun y x => f (x, y))) with
                           | fun _ => ?f => f
                           end in
                  let g := match (eval cbv [snd] in (fun x y => g (x, y))) with
                           | fun _ => ?g => g
                           end in
                  constr:(@combine_update_nth _ _ n f g xs ys)
             end in
  rewrite <- lem.

Lemma combine_update_nth_l : forall {A B} n (f : A -> A) xs (ys:list B),
  combine (update_nth n f xs) ys =
  update_nth n (fun xy => (f (fst xy), snd xy)) (combine xs ys).
Proof.
  intros ??? f xs ys.
  etransitivity; [ | apply combine_update_nth with (g := fun x => x) ].
  rewrite update_nth_id; reflexivity.
Qed.

Lemma combine_update_nth_r : forall {A B} n (g : B -> B) (xs:list A) (ys:list B),
  combine xs (update_nth n g ys) =
  update_nth n (fun xy => (fst xy, g (snd xy))) (combine xs ys).
Proof.
  intros ??? g xs ys.
  etransitivity; [ | apply combine_update_nth with (f := fun x => x) ].
  rewrite update_nth_id; reflexivity.
Qed.

Lemma combine_set_nth : forall {A B} n (x:A) xs (ys:list B),
  combine (set_nth n x xs) ys =
    match nth_error ys n with
    | None => combine xs ys
    | Some y => set_nth n (x,y) (combine xs ys)
    end.
Proof.
  intros A B n x xs ys; unfold set_nth; rewrite combine_update_nth_l.
  nth_tac;
    [ repeat rewrite_rev_combine_update_nth; apply f_equal2
    | assert (nth_error (combine xs ys) n = None)
      by (apply nth_error_None; rewrite combine_length; omega * ) ];
    autorewrite with simpl_update_nth; reflexivity.
Qed.

Lemma nth_error_value_In : forall {T} n xs (x:T),
  nth_error xs n = Some x -> In x xs.
Proof.
  induction n; destruct xs; nth_tac.
Qed.

Lemma In_nth_error_value : forall {T} xs (x:T),
  In x xs -> exists n, nth_error xs n = Some x.
Proof.
  induction xs as [|?? IHxs]; nth_tac; destruct_head or; subst.
  - exists 0; reflexivity.
  - edestruct IHxs as [x0]; eauto. exists (S x0). eauto.
Qed.

Lemma nth_value_index : forall {T} i xs (x:T),
  nth_error xs i = Some x -> In i (seq 0 (length xs)).
Proof.
  induction i as [|? IHi]; destruct xs; nth_tac; right.
  rewrite <- seq_shift; apply in_map; eapply IHi; eauto.
Qed.

Lemma nth_error_app : forall {T} n (xs ys:list T), nth_error (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_error xs n
  else nth_error ys (n - length xs).
Proof.
  induction n as [|n IHn]; destruct xs as [|? xs]; nth_tac;
    rewrite IHn; destruct (lt_dec n (length xs)); trivial; omega.
Qed.

Lemma nth_default_app : forall {T} n x (xs ys:list T), nth_default x (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_default x xs n
  else nth_default x ys (n - length xs).
Proof.
  intros T n x xs ys.
  unfold nth_default.
  rewrite nth_error_app.
  destruct (lt_dec n (length xs)); auto.
Qed.

Hint Rewrite @nth_default_app : push_nth_default.

Lemma combine_truncate_r : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine xs (firstn (length xs) ys).
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_truncate_l : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine (firstn (length ys) xs) ys.
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_app_samelength : forall {A B} (xs xs':list A) (ys ys':list B),
  length xs = length ys ->
  combine (xs ++ xs') (ys ++ ys') = combine xs ys ++ combine xs' ys'.
Proof.
  induction xs, xs', ys, ys'; boring; omega.
Qed.

Lemma map_fst_combine {A B} (xs:list A) (ys:list B) : List.map fst (List.combine xs ys) = List.firstn (length ys) xs.
Proof.
  revert xs; induction ys; destruct xs; simpl; solve [ trivial | congruence ].
Qed.

Lemma map_snd_combine {A B} (xs:list A) (ys:list B) : List.map snd (List.combine xs ys) = List.firstn (length xs) ys.
Proof.
  revert xs; induction ys; destruct xs; simpl; solve [ trivial | congruence ].
Qed.
Hint Rewrite @map_fst_combine @map_snd_combine : push_map.

Lemma skipn_nil : forall {A} n, skipn n nil = @nil A.
Proof. destruct n; auto. Qed.

Hint Rewrite @skipn_nil : simpl_skipn.
Hint Rewrite @skipn_nil : push_skipn.

Lemma skipn_0 : forall {A} xs, @skipn A 0 xs = xs.
Proof. reflexivity. Qed.

Hint Rewrite @skipn_0 : simpl_skipn.
Hint Rewrite @skipn_0 : push_skipn.

Lemma skipn_cons_S : forall {A} n x xs, @skipn A (S n) (x::xs) = @skipn A n xs.
Proof. reflexivity. Qed.

Hint Rewrite @skipn_cons_S : simpl_skipn.
Hint Rewrite @skipn_cons_S : push_skipn.

Lemma skipn_app : forall {A} n (xs ys : list A),
  skipn n (xs ++ ys) = skipn n xs ++ skipn (n - length xs) ys.
Proof.
  induction n, xs, ys; boring.
Qed.

Hint Rewrite @skipn_app : push_skipn.

Lemma skipn_skipn {A} n1 n2 (ls : list A)
  : skipn n2 (skipn n1 ls) = skipn (n1 + n2) ls.
Proof.
  revert n2 ls; induction n1, ls;
    simpl; autorewrite with simpl_skipn;
      boring.
Qed.

Hint Rewrite @skipn_skipn : simpl_skipn.
Hint Rewrite <- @skipn_skipn : push_skipn.
Hint Rewrite @skipn_skipn : pull_skipn.

Lemma skipn_firstn {A} (ls : list A) n m
  : skipn n (firstn m ls) = firstn (m - n) (skipn n ls).
Proof.
  revert n m; induction ls, m, n; simpl; autorewrite with simpl_skipn simpl_firstn; boring_list.
Qed.
Lemma firstn_skipn_add {A} (ls : list A) n m
  : firstn n (skipn m ls) = skipn m (firstn (m + n) ls).
Proof.
  revert n m; induction ls, m; simpl; autorewrite with simpl_skipn simpl_firstn; boring_list.
Qed.
Lemma firstn_skipn_add' {A} (ls : list A) n m
  : firstn n (skipn m ls) = skipn m (firstn (n + m) ls).
Proof. rewrite firstn_skipn_add; do 2 f_equal; auto with arith. Qed.
Hint Rewrite <- @firstn_skipn_add @firstn_skipn_add' : simpl_firstn.
Hint Rewrite <- @firstn_skipn_add @firstn_skipn_add' : simpl_skipn.

Lemma firstn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  firstn n (xs ++ ys) = firstn n xs.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Hint Rewrite @firstn_app_inleft using solve [ distr_length ] : simpl_firstn.
Hint Rewrite @firstn_app_inleft using solve [ distr_length ] : push_firstn.

Lemma skipn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  skipn n (xs ++ ys) = skipn n xs ++ ys.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Hint Rewrite @skipn_app_inleft using solve [ distr_length ] : push_skipn.

Lemma firstn_map : forall {A B} (f : A -> B) n (xs : list A), firstn n (map f xs) = map f (firstn n xs).
Proof. induction n, xs; boring. Qed.

Hint Rewrite @firstn_map : push_firstn.
Hint Rewrite <- @firstn_map : pull_firstn.

Lemma skipn_map : forall {A B} (f : A -> B) n (xs : list A), skipn n (map f xs) = map f (skipn n xs).
Proof. induction n, xs; boring. Qed.

Hint Rewrite @skipn_map : push_skipn.
Hint Rewrite <- @skipn_map : pull_skipn.

Lemma firstn_all : forall {A} n (xs:list A), n = length xs -> firstn n xs = xs.
Proof.
  induction n, xs; boring; omega.
Qed.

Hint Rewrite @firstn_all using solve [ distr_length ] : simpl_firstn.
Hint Rewrite @firstn_all using solve [ distr_length ] : push_firstn.

Lemma skipn_all : forall {T} n (xs:list T),
  (n >= length xs)%nat ->
  skipn n xs = nil.
Proof.
  induction n, xs; boring; omega.
Qed.

Hint Rewrite @skipn_all using solve [ distr_length ] : simpl_skipn.
Hint Rewrite @skipn_all using solve [ distr_length ] : push_skipn.

Lemma firstn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  firstn n (l ++ l') = l.
Proof.
  intros.
  rewrite firstn_app_inleft; auto using firstn_all; omega.
Qed.

Hint Rewrite @firstn_app_sharp using solve [ distr_length ] : simpl_firstn.
Hint Rewrite @firstn_app_sharp using solve [ distr_length ] : push_firstn.

Lemma skipn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  skipn n (l ++ l') = l'.
Proof.
  intros.
  rewrite skipn_app_inleft; try rewrite skipn_all; auto; omega.
Qed.

Hint Rewrite @skipn_app_sharp using solve [ distr_length ] : simpl_skipn.
Hint Rewrite @skipn_app_sharp using solve [ distr_length ] : push_skipn.

Lemma skipn_length : forall {A} n (xs : list A),
  length (skipn n xs) = (length xs - n)%nat.
Proof.
  induction n, xs; boring.
Qed.

Hint Rewrite @skipn_length : distr_length.

Lemma length_cons : forall {T} (x:T) xs, length (x::xs) = S (length xs).
  reflexivity.
Qed.

Hint Rewrite @length_cons : distr_length.

Lemma length_cons_full {T} n (x:list T) (t:T) (H: length (t :: x) = S n)
  : length x = n.
Proof. distr_length. Qed.

Lemma cons_length : forall A (xs : list A) a, length (a :: xs) = S (length xs).
Proof.
  auto.
Qed.

Lemma length0_nil : forall {A} (xs : list A), length xs = 0%nat -> xs = nil.
Proof.
  induction xs; boring; discriminate.
Qed.

Lemma length_tl {A} ls : length (@tl A ls) = (length ls - 1)%nat.
Proof. destruct ls; cbn [tl length]; omega. Qed.
Hint Rewrite @length_tl : distr_length.

Lemma length_snoc : forall {T} xs (x:T),
  length xs = pred (length (xs++x::nil)).
Proof.
  boring; simpl_list; boring.
Qed.

Lemma combine_cons : forall {A B} a b (xs:list A) (ys:list B),
  combine (a :: xs) (b :: ys) = (a,b) :: combine xs ys.
Proof. reflexivity. Qed.
Hint Rewrite @combine_cons : push_combine.

Lemma firstn_combine : forall {A B} n (xs:list A) (ys:list B),
  firstn n (combine xs ys) = combine (firstn n xs) (firstn n ys).
Proof.
  induction n, xs, ys; boring.
Qed.

Hint Rewrite @firstn_combine : push_firstn.
Hint Rewrite <- @firstn_combine : pull_firstn.

Lemma combine_nil_r : forall {A B} (xs:list A),
  combine xs (@nil B) = nil.
Proof.
  induction xs; boring.
Qed.
Hint Rewrite @combine_nil_r : push_combine.

Lemma combine_snoc {A B} xs : forall ys x y,
    length xs = length ys ->
    @combine A B (xs ++ (x :: nil)) (ys ++ (y :: nil)) = combine xs ys ++ ((x, y) :: nil).
Proof.
  induction xs; intros; destruct ys; distr_length; cbn;
    try rewrite IHxs by omega; reflexivity.
Qed.
Hint Rewrite @combine_snoc using (solve [distr_length]) : push_combine.

Lemma skipn_combine : forall {A B} n (xs:list A) (ys:list B),
  skipn n (combine xs ys) = combine (skipn n xs) (skipn n ys).
Proof.
  induction n, xs, ys; boring.
  rewrite combine_nil_r; reflexivity.
Qed.

Hint Rewrite @skipn_combine : push_skipn.
Hint Rewrite <- @skipn_combine : pull_skipn.

Lemma break_list_last: forall {T} (xs:list T),
  xs = nil \/ exists xs' y, xs = xs' ++ y :: nil.
Proof.
  destruct xs using rev_ind; auto.
  right; do 2 eexists; auto.
Qed.

Lemma break_list_first: forall {T} (xs:list T),
  xs = nil \/ exists x xs', xs = x :: xs'.
Proof.
  destruct xs; auto.
  right; do 2 eexists; auto.
Qed.

Lemma list012 : forall {T} (xs:list T),
  xs = nil
  \/ (exists x, xs = x::nil)
  \/ (exists x xs' y, xs = x::xs'++y::nil).
Proof.
  destruct xs as [|? xs]; auto.
  right.
  destruct xs using rev_ind. {
    left; eexists; auto.
  } {
    right; repeat eexists; auto.
  }
Qed.

Lemma nil_length0 : forall {T}, length (@nil T) = 0%nat.
Proof.
  auto.
Qed.

Hint Rewrite @nil_length0 : distr_length.

Lemma nth_error_Some_nth_default : forall {T} i x (l : list T), (i < length l)%nat ->
  nth_error l i = Some (nth_default x l i).
Proof.
  intros ? ? ? ? i_lt_length.
  destruct (nth_error_length_exists_value _ _ i_lt_length) as [k nth_err_k].
  unfold nth_default.
  rewrite nth_err_k.
  reflexivity.
Qed.

Lemma update_nth_cons : forall {T} f (u0 : T) us, update_nth 0 f (u0 :: us) = (f u0) :: us.
Proof. reflexivity. Qed.

Hint Rewrite @update_nth_cons : simpl_update_nth.

Lemma set_nth_cons : forall {T} (x u0 : T) us, set_nth 0 x (u0 :: us) = x :: us.
Proof. intros; apply update_nth_cons. Qed.

Hint Rewrite @set_nth_cons : simpl_set_nth.

Lemma cons_update_nth : forall {T} n f (y : T) us,
  y :: update_nth n f us = update_nth (S n) f (y :: us).
Proof.
  induction n; boring.
Qed.

Hint Rewrite <- @cons_update_nth : simpl_update_nth.

Lemma update_nth_nil : forall {T} n f, update_nth n f (@nil T) = @nil T.
Proof.
  induction n; boring.
Qed.

Hint Rewrite @update_nth_nil : simpl_update_nth.

Lemma cons_set_nth : forall {T} n (x y : T) us,
  y :: set_nth n x us = set_nth (S n) x (y :: us).
Proof. intros; apply cons_update_nth. Qed.

Hint Rewrite <- @cons_set_nth : simpl_set_nth.

Lemma set_nth_nil : forall {T} n (x : T), set_nth n x nil = nil.
Proof. intros; apply update_nth_nil. Qed.

Hint Rewrite @set_nth_nil : simpl_set_nth.

Lemma skipn_nth_default : forall {T} n us (d : T), (n < length us)%nat ->
 skipn n us = nth_default d us n :: skipn (S n) us.
Proof.
  induction n as [|n IHn]; destruct us as [|? us]; intros d H; nth_tac.
  rewrite (IHn us d) at 1 by omega.
  nth_tac.
Qed.

Lemma nth_default_out_of_bounds : forall {T} n us (d : T), (n >= length us)%nat ->
  nth_default d us n = d.
Proof.
  induction n as [|n IHn]; unfold nth_default; nth_tac;
    let us' := match goal with us : list _ |- _ => us end in
    destruct us' as [|? us]; nth_tac.
  assert (n >= length us)%nat by omega.
  pose proof (nth_error_length_error _ n us).
  specialize_by_assumption.
  rewrite_hyp * in *.
  congruence.
Qed.

Hint Rewrite @nth_default_out_of_bounds using omega : simpl_nth_default.

Ltac nth_error_inbounds :=
  match goal with
  | [ |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] =>
    case_eq (nth_error xs i);
    match goal with
      | [ |- forall _, nth_error xs i = Some _ -> _ ] =>
          let x := fresh "x" in
          let H := fresh "H" in
          intros x H;
          repeat progress erewrite H;
          repeat progress erewrite (nth_error_value_eq_nth_default i xs x); auto
      | [ |- nth_error xs i = None -> _ ] =>
          let H := fresh "H" in
          intros H;
          destruct (nth_error_length_not_error _ _ H);
          try solve [distr_length]
    end;
    idtac
  end.
Ltac set_nth_inbounds :=
  match goal with
  | [ |- context[set_nth ?i ?x ?xs] ] =>
    rewrite (set_nth_equiv_splice_nth i x xs);
    destruct (lt_dec i (length xs));
    match goal with
    | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H
    | [ H :   (i < (length xs))%nat |- _ ] => try solve [distr_length]
    end
  end.
Ltac update_nth_inbounds :=
  match goal with
  | [ |- context[update_nth ?i ?f ?xs] ] =>
    rewrite (update_nth_equiv_splice_nth i f xs);
    destruct (lt_dec i (length xs));
    match goal with
    | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H
    | [ H :   (i < (length xs))%nat |- _ ] => remove_nth_error; try solve [distr_length]
    end
  end.

Ltac nth_inbounds := nth_error_inbounds || set_nth_inbounds || update_nth_inbounds.

Definition nth_dep {A} (ls : list A) (n : nat) (pf : n < length ls) : A.
Proof.
  refine (match nth_error ls n as v return nth_error ls n = v -> A with
          | Some v => fun _ => v
          | None => fun bad => match _ : False with end
          end eq_refl).
  apply (proj1 (@nth_error_None _ _ _)) in bad; instantiate; generalize dependent (length ls); clear.
  abstract (intros; omega).
Defined.

Lemma nth_error_nth_dep {A} ls n pf : nth_error ls n = Some (@nth_dep A ls n pf).
Proof.
  unfold nth_dep.
  generalize dependent (@nth_error_None A ls n).
  edestruct nth_error; boring.
Qed.

Lemma nth_default_nth_dep {A} d ls n pf : nth_default d ls n = @nth_dep A ls n pf.
Proof.
  unfold nth_dep.
  generalize dependent (@nth_error_None A ls n).
  destruct (nth_error ls n) eqn:?; boring.
  erewrite nth_error_value_eq_nth_default by eassumption; reflexivity.
Qed.

Lemma nth_default_in_bounds : forall {T} (d' d : T) n us, (n < length us)%nat ->
  nth_default d us n = nth_default d' us n.
Proof.
  intros; erewrite !nth_default_nth_dep; reflexivity.
  Grab Existential Variables.
  assumption.
Qed.

Hint Resolve @nth_default_in_bounds : simpl_nth_default.

Lemma cons_eq_head : forall {T} (x y:T) xs ys, x::xs = y::ys -> x=y.
Proof.
  intros; congruence.
Qed.
Lemma cons_eq_tail : forall {T} (x y:T) xs ys, x::xs = y::ys -> xs=ys.
Proof.
  intros; congruence.
Qed.

Lemma map_nth_default_always {A B} (f : A -> B) (n : nat) (x : A) (l : list A)
  : nth_default (f x) (map f l) n = f (nth_default x l n).
Proof.
  revert n; induction l; simpl; intro n; destruct n; [ try reflexivity.. ].
  nth_tac.
Qed.

Hint Rewrite @map_nth_default_always : push_nth_default.

Lemma map_S_seq {A} (f:nat->A) len : forall start,
  List.map (fun i => f (S i)) (seq start len) = List.map f (seq (S start) len).
Proof. induction len as [|len IHlen]; intros; simpl; rewrite ?IHlen; reflexivity. Qed.

Lemma seq_snoc len : forall start, seq start (S len) = seq start len ++ ((start + len)%nat :: nil).
Proof.
  induction len; intros.
  { cbv [seq app]. autorewrite with natsimplify; reflexivity. }
  { remember (S len); simpl seq.
      rewrite (IHlen (S start)); subst; simpl seq.
      rewrite Nat.add_succ_r; reflexivity. }
Qed.

Lemma seq_len_0 a : seq a 0 = nil. Proof. reflexivity. Qed.
Lemma seq_add start a b : seq start (a + b) = seq start a ++ seq (start + a) b.
Proof.
  revert start b; induction a as [|a IHa]; cbn; intros start b.
  { f_equal; omega. }
  { rewrite IHa; do 3 f_equal; omega. }
Qed.

Lemma fold_right_and_True_forall_In_iff : forall {T} (l : list T) (P : T -> Prop),
  (forall x, In x l -> P x) <-> fold_right and True (map P l).
Proof.
  induction l as [|?? IHl]; intros; simpl; try tauto.
  rewrite <- IHl.
  intuition (subst; auto).
Qed.

Lemma fold_right_invariant : forall {A B} P (f: A -> B -> B) l x,
  P x -> (forall y, In y l -> forall z, P z -> P (f y z)) ->
  P (fold_right f x l).
Proof.
  induction l as [|a l IHl]; intros ? ? step; auto.
  simpl.
  apply step; try apply in_eq.
  apply IHl; auto.
  intros y in_y_l.
  apply (in_cons a) in in_y_l.
  auto.
Qed.

Lemma In_firstn : forall {T} n l (x : T), In x (firstn n l) -> In x l.
Proof.
  induction n; destruct l; boring.
Qed.

Lemma In_skipn : forall {T} n l (x : T), In x (skipn n l) -> In x l.
Proof.
  induction n; destruct l; boring.
Qed.

Lemma In_firstn_skipn_split {T} n (x : T)
  : forall l, In x l <-> In x (firstn n l) \/ In x (skipn n l).
Proof.
  intro l; split; revert l; induction n; destruct l; boring.
  match goal with
  | [ IH : forall l, In ?x l -> _ \/ _, H' : In ?x ?ls |- _ ]
    => destruct (IH _ H')
  end; auto.
Qed.

Lemma firstn_firstn_min : forall {A} m n (l : list A),
    firstn n (firstn m l) = firstn (min n m) l.
Proof.
  induction m as [|? IHm]; destruct n; intros l; try omega; auto.
  destruct l; auto.
  simpl.
  f_equal.
  apply IHm; omega.
Qed.

Lemma firstn_firstn : forall {A} m n (l : list A), (n <= m)%nat ->
  firstn n (firstn m l) = firstn n l.
Proof.
  intros A m n l H; rewrite firstn_firstn_min.
  apply Min.min_case_strong; intro; [ reflexivity | ].
  assert (n = m) by omega; subst; reflexivity.
Qed.

Hint Rewrite @firstn_firstn using omega : push_firstn.

Lemma firstn_succ : forall {A} (d : A) n l, (n < length l)%nat ->
  firstn (S n) l = (firstn n l) ++ nth_default d l n :: nil.
Proof.
  intros A d; induction n as [|? IHn]; destruct l; rewrite ?(@nil_length0 A); intros; try omega.
  + rewrite nth_default_cons; auto.
  + simpl.
    rewrite nth_default_cons_S.
    rewrite <-IHn by (rewrite cons_length in *; omega).
    reflexivity.
Qed.

Lemma firstn_seq k a b
  : firstn k (seq a b) = seq a (min k b).
Proof.
  revert k a; induction b as [|? IHb], k; simpl; try reflexivity.
  intros; rewrite IHb; reflexivity.
Qed.
Hint Rewrite @firstn_seq : push_firstn.

Lemma skipn_seq k a b
  : skipn k (seq a b) = seq (k + a) (b - k).
Proof.
  revert k a; induction b as [|? IHb], k; simpl; try reflexivity.
  intros; rewrite IHb; simpl; f_equal; omega.
Qed.

Lemma update_nth_out_of_bounds : forall {A} n f xs, n >= length xs -> @update_nth A n f xs = xs.
Proof.
  induction n as [|n IHn]; destruct xs; simpl; try congruence; try omega; intros.
  rewrite IHn by omega; reflexivity.
Qed.

Hint Rewrite @update_nth_out_of_bounds using omega : simpl_update_nth.


Lemma update_nth_nth_default_full : forall {A} (d:A) n f l i,
  nth_default d (update_nth n f l) i =
  if lt_dec i (length l) then
    if (eq_nat_dec i n) then f (nth_default d l i)
    else nth_default d l i
  else d.
Proof.
  induction n as [|n IHn]; (destruct l; simpl in *; [ intros i **; destruct i; simpl; try reflexivity; omega | ]);
    intros i **; repeat break_match; subst; try destruct i;
      repeat first [ progress break_match
                   | progress subst
                   | progress boring
                   | progress autorewrite with simpl_nth_default
                   | omega ].
Qed.

Hint Rewrite @update_nth_nth_default_full : push_nth_default.

Lemma update_nth_nth_default : forall {A} (d:A) n f l i, (0 <= i < length l)%nat ->
  nth_default d (update_nth n f l) i =
  if (eq_nat_dec i n) then f (nth_default d l i) else nth_default d l i.
Proof. intros; rewrite update_nth_nth_default_full; repeat break_match; boring. Qed.

Hint Rewrite @update_nth_nth_default using (omega || distr_length; omega) : push_nth_default.

Lemma set_nth_nth_default_full : forall {A} (d:A) n v l i,
  nth_default d (set_nth n v l) i =
  if lt_dec i (length l) then
    if (eq_nat_dec i n) then v
    else nth_default d l i
  else d.
Proof. intros; apply update_nth_nth_default_full; assumption. Qed.

Hint Rewrite @set_nth_nth_default_full : push_nth_default.

Lemma set_nth_nth_default : forall {A} (d:A) n x l i, (0 <= i < length l)%nat ->
  nth_default d (set_nth n x l) i =
  if (eq_nat_dec i n) then x else nth_default d l i.
Proof. intros; apply update_nth_nth_default; assumption. Qed.

Hint Rewrite @set_nth_nth_default using (omega || distr_length; omega) : push_nth_default.

Lemma nth_default_preserves_properties : forall {A} (P : A -> Prop) l n d,
  (forall x, In x l -> P x) -> P d -> P (nth_default d l n).
Proof.
  intros A P l n d H H0; rewrite nth_default_eq.
  destruct (nth_in_or_default n l d); auto.
  congruence.
Qed.

Lemma nth_default_preserves_properties_length_dep :
  forall {A} (P : A -> Prop) l n d,
  (forall x, In x l -> n < (length l) -> P x) -> ((~ n < length l) -> P d) -> P (nth_default d l n).
Proof.
  intros A P l n d H H0.
  destruct (lt_dec n (length l)).
  + rewrite nth_default_eq; auto using nth_In.
  + rewrite nth_default_out_of_bounds by omega.
    auto.
Qed.

Lemma nth_error_first : forall {T} (a b : T) l,
  nth_error (a :: l) 0 = Some b -> a = b.
Proof.
  intros; simpl in *.
  unfold value in *.
  congruence.
Qed.

Lemma nth_error_exists_first : forall {T} l (x : T) (H : nth_error l 0 = Some x),
  exists l', l = x :: l'.
Proof.
  induction l; try discriminate; intros x H; eexists.
  apply nth_error_first in H.
  subst; eauto.
Qed.

Lemma list_elementwise_eq : forall {T} (l1 l2 : list T),
  (forall i, nth_error l1 i = nth_error l2 i) -> l1 = l2.
Proof.
  induction l1, l2; intros H; try reflexivity;
    pose proof (H 0%nat) as Hfirst; simpl in Hfirst; inversion Hfirst.
  f_equal.
  apply IHl1.
  intros i; specialize (H (S i)).
  boring.
Qed.

Lemma sum_firstn_all_succ : forall n l, (length l <= n)%nat ->
  sum_firstn l (S n) = sum_firstn l n.
Proof.
  unfold sum_firstn; intros.
  autorewrite with push_firstn; reflexivity.
Qed.

Hint Rewrite @sum_firstn_all_succ using omega : simpl_sum_firstn.

Lemma sum_firstn_all : forall n l, (length l <= n)%nat ->
  sum_firstn l n = sum_firstn l (length l).
Proof.
  unfold sum_firstn; intros.
  autorewrite with push_firstn; reflexivity.
Qed.

Hint Rewrite @sum_firstn_all using omega : simpl_sum_firstn.

Lemma sum_firstn_succ_default : forall l i,
  sum_firstn l (S i) = (nth_default 0 l i + sum_firstn l i)%Z.
Proof.
  unfold sum_firstn; induction l as [|a l IHl], i;
    intros; autorewrite with simpl_nth_default simpl_firstn simpl_fold_right in *;
      try reflexivity.
  rewrite IHl; omega.
Qed.

Hint Rewrite @sum_firstn_succ_default : simpl_sum_firstn.

Lemma sum_firstn_0 : forall xs,
  sum_firstn xs 0 = 0%Z.
Proof.
  destruct xs; reflexivity.
Qed.

Hint Rewrite @sum_firstn_0 : simpl_sum_firstn.

Lemma sum_firstn_succ : forall l i x,
  nth_error l i = Some x ->
  sum_firstn l (S i) = (x + sum_firstn l i)%Z.
Proof.
  intros; rewrite sum_firstn_succ_default.
  erewrite nth_error_value_eq_nth_default by eassumption; reflexivity.
Qed.

Hint Rewrite @sum_firstn_succ using congruence : simpl_sum_firstn.

Lemma sum_firstn_succ_cons : forall x xs i,
  sum_firstn (x :: xs) (S i) = (x + sum_firstn xs i)%Z.
Proof.
  unfold sum_firstn; simpl; reflexivity.
Qed.

Hint Rewrite @sum_firstn_succ_cons : simpl_sum_firstn.

Lemma sum_firstn_nil : forall i,
  sum_firstn nil i = 0%Z.
Proof. destruct i; reflexivity. Qed.

Hint Rewrite @sum_firstn_nil : simpl_sum_firstn.

Lemma sum_firstn_succ_default_rev : forall l i,
  sum_firstn l i = (sum_firstn l (S i) - nth_default 0 l i)%Z.
Proof.
  intros; rewrite sum_firstn_succ_default; omega.
Qed.

Lemma sum_firstn_succ_rev : forall l i x,
  nth_error l i = Some x ->
  sum_firstn l i = (sum_firstn l (S i) - x)%Z.
Proof.
  intros; erewrite sum_firstn_succ by eassumption; omega.
Qed.

Lemma sum_firstn_nonnegative : forall n l, (forall x, In x l -> 0 <= x)%Z
                                       -> (0 <= sum_firstn l n)%Z.
Proof.
  induction n as [|n IHn]; destruct l as [|? l]; autorewrite with simpl_sum_firstn; simpl; try omega.
  { specialize (IHn l).
    destruct n; simpl; autorewrite with simpl_sum_firstn simpl_nth_default in *;
      intuition auto with zarith. }
Qed.

Hint Resolve sum_firstn_nonnegative : znonzero.

Lemma sum_firstn_app : forall xs ys n,
  sum_firstn (xs ++ ys) n = (sum_firstn xs n + sum_firstn ys (n - length xs))%Z.
Proof.
  induction xs as [|a xs IHxs]; simpl.
  { intros ys n; autorewrite with simpl_sum_firstn; simpl.
    f_equal; omega. }
  { intros ys [|n]; autorewrite with simpl_sum_firstn; simpl; [ reflexivity | ].
    rewrite IHxs; omega. }
Qed.

Lemma sum_firstn_app_sum : forall xs ys n,
  sum_firstn (xs ++ ys) (length xs + n) = (sum_firstn xs (length xs) + sum_firstn ys n)%Z.
Proof.
  intros; rewrite sum_firstn_app; autorewrite with simpl_sum_firstn.
  do 2 f_equal; omega.
Qed.
Hint Rewrite @sum_firstn_app_sum : simpl_sum_firstn.

Lemma sum_cons xs x : sum (x :: xs) = (x + sum xs)%Z.
Proof. reflexivity. Qed.
Hint Rewrite sum_cons : push_sum.

Lemma sum_nil : sum nil = 0%Z.
Proof. reflexivity. Qed.
Hint Rewrite sum_nil : push_sum.

Lemma sum_app x y : sum (x ++ y) = (sum x + sum y)%Z.
Proof. induction x; rewrite ?app_nil_l, <-?app_comm_cons; autorewrite with push_sum; omega. Qed.
Hint Rewrite sum_app : push_sum.

Lemma nth_error_skipn : forall {A} n (l : list A) m,
nth_error (skipn n l) m = nth_error l (n + m).
Proof.
induction n as [|n IHn]; destruct l; boring.
apply nth_error_nil_error.
Qed.
Hint Rewrite @nth_error_skipn : push_nth_error.

Lemma nth_default_skipn : forall {A} (l : list A) d n m, nth_default d (skipn n l) m = nth_default d l (n + m).
Proof.
cbv [nth_default]; intros.
rewrite nth_error_skipn.
reflexivity.
Qed.
Hint Rewrite @nth_default_skipn : push_nth_default.

Lemma sum_firstn_skipn : forall l n m, sum_firstn l (n + m) = (sum_firstn l n + sum_firstn (skipn n l) m)%Z.
Proof.
induction m; intros.
+ rewrite sum_firstn_0. autorewrite with natsimplify. omega.
+ rewrite <-plus_n_Sm, !sum_firstn_succ_default.
    rewrite nth_default_skipn.
    omega.
Qed.

Lemma nth_default_seq_inbounds d s n i (H:(i < n)%nat) :
  List.nth_default d (List.seq s n) i = (s+i)%nat.
Proof.
  progress cbv [List.nth_default].
  rewrite nth_error_seq.
  break_innermost_match; solve [ trivial | omega ].
Qed.
Hint Rewrite @nth_default_seq_inbounds using lia : push_nth_default.

Lemma sum_firstn_prefix_le' : forall l n m, (forall x, In x l -> (0 <= x)%Z) ->
                                            (sum_firstn l n <= sum_firstn l (n + m))%Z.
Proof.
intros l n m H.
rewrite sum_firstn_skipn.
pose proof (sum_firstn_nonnegative m (skipn n l)) as Hskipn_nonneg.
match type of Hskipn_nonneg with
  ?P -> _ => assert P as Q; [ | specialize (Hskipn_nonneg Q); omega ] end.
intros x HIn_skipn.
apply In_skipn in HIn_skipn.
auto.
Qed.

Lemma sum_firstn_prefix_le : forall l n m, (forall x, In x l -> (0 <= x)%Z) ->
                                            (n <= m)%nat ->
                                            (sum_firstn l n <= sum_firstn l m)%Z.
Proof.
intros l n m H H0.
replace m with (n + (m - n))%nat by omega.
auto using sum_firstn_prefix_le'.
Qed.

Lemma sum_firstn_pos_lt_succ : forall l n m, (forall x, In x l -> (0 <= x)%Z) ->
                                        (n < length l)%nat ->
                                        (sum_firstn l n < sum_firstn l (S m))%Z ->
                                        (n <= m)%nat.
Proof.
intros l n m H H0 H1.
destruct (le_dec n m); auto.
replace n with (m + (n - m))%nat in H1 by omega.
rewrite sum_firstn_skipn in H1.
rewrite sum_firstn_succ_default in *.
match goal with H : (?a + ?b < ?c + ?a)%Z |- _ => assert (H2 : (b < c)%Z) by omega end.
destruct (lt_dec m (length l)). {
    rewrite skipn_nth_default with (d := 0%Z) in H2 by assumption.
    replace (n - m)%nat with (S (n - S m))%nat in H2 by omega.
    rewrite sum_firstn_succ_cons in H2.
    pose proof (sum_firstn_nonnegative (n - S m) (skipn (S m) l)) as H3.
    match type of H3 with
      ?P -> _ => assert P as Q; [ | specialize (H3 Q); omega ] end.
    intros ? A.
    apply In_skipn in A.
    apply H in A.
    omega.
} {
    rewrite skipn_all, nth_default_out_of_bounds in H2 by omega.
    rewrite sum_firstn_nil in H2; omega.
}
Qed.

Definition NotSum {T} (xs : list T) (v : nat) := True.

Ltac NotSum :=
  lazymatch goal with
  | [ |- NotSum ?xs (length ?xs + _)%nat ] => fail
  | [ |- NotSum _ _ ] => exact I
  end.

Lemma sum_firstn_app_hint : forall xs ys n, NotSum xs n ->
  sum_firstn (xs ++ ys) n = (sum_firstn xs n + sum_firstn ys (n - length xs))%Z.
Proof. auto using sum_firstn_app. Qed.

Hint Rewrite sum_firstn_app_hint using solve [ NotSum ] : simpl_sum_firstn.


Lemma nth_default_map2 : forall {A B C} (f : A -> B -> C) ls1 ls2 i d d1 d2,
  nth_default d (map2 f ls1 ls2) i =
    if lt_dec i (min (length ls1) (length ls2))
    then f (nth_default d1 ls1 i) (nth_default d2 ls2 i)
    else d.
Proof.
  induction ls1 as [|a ls1 IHls1], ls2.
  + cbv [map2 length min].
    intros.
    break_match; try omega.
    apply nth_default_nil.
  + cbv [map2 length min].
    intros.
    break_match; try omega.
    apply nth_default_nil.
  + cbv [map2 length min].
    intros.
    break_match; try omega.
    apply nth_default_nil.
  + simpl.
    destruct i.
    - intros. rewrite !nth_default_cons.
      break_match; auto; omega.
    - intros d d1 d2. rewrite !nth_default_cons_S.
      rewrite IHls1 with (d1 := d1) (d2 := d2).
      repeat break_match; auto; omega.
Qed.

Lemma map2_cons : forall A B C (f : A -> B -> C) ls1 ls2 a b,
  map2 f (a :: ls1) (b :: ls2) = f a b :: map2 f ls1 ls2.
Proof.
  reflexivity.
Qed.

Lemma map2_nil_l : forall A B C (f : A -> B -> C) ls2,
  map2 f nil ls2 = nil.
Proof.
  reflexivity.
Qed.

Lemma map2_nil_r : forall A B C (f : A -> B -> C) ls1,
  map2 f ls1 nil = nil.
Proof.
  destruct ls1; reflexivity.
Qed.
Local Hint Resolve map2_nil_r map2_nil_l.

Ltac simpl_list_lengths := repeat match goal with
                                  | H : context[length (@nil ?A)] |- _ => rewrite (@nil_length0 A) in H
                                  | H : context[length (_ :: _)] |- _ => rewrite length_cons in H
                                  | |- context[length (@nil ?A)] => rewrite (@nil_length0 A)
                                  | |- context[length (_ :: _)] => rewrite length_cons
                                  end.

Section OpaqueMap2.
  Local Opaque map2.

  Lemma map2_length : forall A B C (f : A -> B -> C) ls1 ls2,
      length (map2 f ls1 ls2) = min (length ls1) (length ls2).
  Proof.
    induction ls1 as [|a ls1 IHls1], ls2; intros; try solve [cbv; auto].
    rewrite map2_cons, !length_cons, IHls1.
    auto.
  Qed.
  Hint Rewrite @map2_length : distr_length.


  Lemma map2_app : forall A B C (f : A -> B -> C) ls1 ls2 ls1' ls2',
      (length ls1 = length ls2) ->
      map2 f (ls1 ++ ls1') (ls2 ++ ls2') = map2 f ls1 ls2 ++ map2 f ls1' ls2'.
  Proof.
    induction ls1 as [|a ls1 IHls1], ls2; intros; rewrite ?map2_nil_r, ?app_nil_l; try congruence;
      simpl_list_lengths; try omega.
    rewrite <-!app_comm_cons, !map2_cons.
    rewrite IHls1; auto.
  Qed.
End OpaqueMap2.

Lemma firstn_update_nth {A}
  : forall f m n (xs : list A), firstn m (update_nth n f xs) = update_nth n f (firstn m xs).
Proof.
  induction m; destruct n, xs;
    autorewrite with simpl_firstn simpl_update_nth;
    congruence.
Qed.

Hint Rewrite @firstn_update_nth : push_firstn.
Hint Rewrite @firstn_update_nth : pull_update_nth.
Hint Rewrite <- @firstn_update_nth : pull_firstn.
Hint Rewrite <- @firstn_update_nth : push_update_nth.

Require Import Coq.Lists.SetoidList.
Global Instance Proper_nth_default : forall A eq,
  Proper (eq==>eqlistA eq==>Logic.eq==>eq) (nth_default (A:=A)).
Proof.
  intros A ee x y H; subst; induction 1.
  + repeat intro; rewrite !nth_default_nil; assumption.
  + intros x1 y0 H2; subst; destruct y0; rewrite ?nth_default_cons, ?nth_default_cons_S; auto.
Qed.

Lemma fold_right_andb_true_map_iff A (ls : list A) f
  : List.fold_right andb true (List.map f ls) = true <-> forall i, List.In i ls -> f i = true.
Proof.
  induction ls as [|a ls IHls]; simpl; [ | rewrite Bool.andb_true_iff, IHls ]; try tauto.
  intuition (congruence || eauto).
Qed.

Lemma fold_right_andb_true_iff_fold_right_and_True (ls : list bool)
  : List.fold_right andb true ls = true <-> List.fold_right and True (List.map (fun b => b = true) ls).
Proof.
  rewrite <- (map_id ls) at 1.
  rewrite fold_right_andb_true_map_iff, fold_right_and_True_forall_In_iff; reflexivity.
Qed.

Lemma Forall2_forall_iff : forall {A B} (R : A -> B -> Prop) (xs : list A) (ys : list B) d1 d2, length xs = length ys ->
  (Forall2 R xs ys <-> (forall i, (i < length xs)%nat -> R (nth_default d1 xs i) (nth_default d2 ys i))).
Proof.
  intros A B R xs ys d1 d2 H; split; [ intros H0 i H1 | intros H0 ].

  + revert xs ys H H0 H1.
    induction i as [|i IHi]; intros xs ys H H0 H1; destruct H0; distr_length; autorewrite with push_nth_default; auto.
    eapply IHi; auto. omega.
  + revert xs ys H H0; induction xs as [|a xs IHxs]; intros ys H H0; destruct ys; distr_length; econstructor.
    - specialize (H0 0%nat).
      autorewrite with push_nth_default in *; auto.
      apply H0; omega.
    - apply IHxs; try omega.
      intros i H1.
      specialize (H0 (S i)).
      autorewrite with push_nth_default in *; auto.
      apply H0; omega.
Qed.

Lemma Forall2_forall_iff' : forall {A} R (xs ys : list A) d, length xs = length ys ->
  (Forall2 R xs ys <-> (forall i, (i < length xs)%nat -> R (nth_default d xs i) (nth_default d ys i))).
Proof. intros; apply Forall2_forall_iff; assumption. Qed.

Lemma nth_default_firstn : forall {A} (d : A) l i n,
  nth_default d (firstn n l) i = if le_dec n (length l)
                                 then if lt_dec i n then nth_default d l i else d
                                 else nth_default d l i.
Proof.
  intros A d l i; induction n as [|n IHn]; break_match; autorewrite with push_nth_default; auto; try omega.
  + rewrite (firstn_succ d) by omega.
    autorewrite with push_nth_default; repeat (break_match_hyps; break_match; distr_length);
      rewrite Min.min_l in * by omega; try omega.
    - apply IHn; omega.
    - replace i with n in * by omega.
      rewrite Nat.sub_diag.
      autorewrite with push_nth_default; auto.
  + rewrite nth_default_out_of_bounds; break_match_hyps; distr_length; auto; lia.
  + rewrite firstn_all2 by omega.
    auto.
Qed.
Hint Rewrite @nth_default_firstn : push_nth_default.

Lemma nth_error_repeat {T} x n i v : nth_error (@repeat T x n) i = Some v -> v = x.
Proof.
  revert n x v; induction i as [|i IHi]; destruct n; simpl in *; eauto; congruence.
Qed.

Hint Rewrite repeat_length : distr_length.

Lemma repeat_spec_iff : forall {A} (ls : list A) x n,
    (length ls = n /\ forall y, In y ls -> y = x) <-> ls = repeat x n.
Proof.
  intros A ls x n; split; [ revert A ls x n | intro; subst; eauto using repeat_length, repeat_spec ].
  induction ls as [|a ls IHls], n; simpl; intros; intuition try congruence.
  f_equal; auto.
Qed.

Lemma repeat_spec_eq : forall {A} (ls : list A) x n,
    length ls = n
    -> (forall y, In y ls -> y = x)
    -> ls = repeat x n.
Proof.
  intros; apply repeat_spec_iff; auto.
Qed.

Lemma tl_repeat {A} x n : tl (@repeat A x n) = repeat x (pred n).
Proof. destruct n; reflexivity. Qed.

Lemma firstn_repeat : forall {A} x n k, firstn k (@repeat A x n) = repeat x (min k n).
Proof. induction n, k; boring. Qed.

Hint Rewrite @firstn_repeat : push_firstn.

Lemma skipn_repeat : forall {A} x n k, skipn k (@repeat A x n) = repeat x (n - k).
Proof. induction n, k; boring. Qed.

Hint Rewrite @skipn_repeat : push_skipn.

Global Instance Proper_map {A B} {RA RB} {Equivalence_RB:Equivalence RB}
  : Proper ((RA==>RB) ==> eqlistA RA ==> eqlistA RB) (@List.map A B).
Proof.
  repeat intro.
  match goal with [H:eqlistA _ _ _ |- _ ] => induction H end; [reflexivity|].
  cbv [respectful] in *; econstructor; eauto.
Qed.

Lemma pointwise_map {A B} : Proper ((pointwise_relation _ eq) ==> eq ==> eq) (@List.map A B).
Proof.
  repeat intro; cbv [pointwise_relation] in *; subst.
  match goal with [H:list _ |- _ ] => induction H as [|? IH IHIH] end; [reflexivity|].
  simpl. rewrite IHIH. congruence.
Qed.

Lemma map_map2 {A B C D} (f:A -> B -> C) (g:C -> D) (xs:list A) (ys:list B) : List.map g (map2 f xs ys) = map2 (fun (a : A) (b : B) => g (f a b)) xs ys.
Proof.
  revert ys; induction xs as [|a xs IHxs]; intros ys; [reflexivity|].
  destruct ys; [reflexivity|].
  simpl. rewrite IHxs. reflexivity.
Qed.

Lemma map2_fst {A B C} (f:A -> C) (xs:list A) : forall (ys:list B), length xs = length ys ->
  map2 (fun (a : A) (_ : B) => f a) xs ys = List.map f xs.
Proof.
  induction xs as [|a xs IHxs]; intros ys **; [reflexivity|].
  destruct ys; [simpl in *; discriminate|].
  simpl. rewrite IHxs by eauto. reflexivity.
Qed.

Lemma map2_flip {A B C} (f:A -> B -> C) (xs:list A) : forall (ys: list B),
   map2 (fun b a => f a b) ys xs = map2 f xs ys.
Proof.
  induction xs as [|a xs IHxs]; destruct ys; try reflexivity; [].
  simpl. rewrite IHxs. reflexivity.
Qed.

Lemma map2_snd {A B C} (f:B -> C) (xs:list A) : forall (ys:list B), length xs = length ys ->
  map2 (fun (_ : A) (b : B) => f b) xs ys = List.map f ys.
Proof. intros. rewrite map2_flip. eauto using map2_fst. Qed.

Lemma map2_map {A B C A' B'} (f:A -> B -> C) (g:A' -> A) (h:B' -> B) (xs:list A') (ys:list B')
  : map2 f (List.map g xs) (List.map h ys) = map2 (fun a b => f (g a) (h b)) xs ys.
Proof.
  revert ys; induction xs as [|a xs IHxs]; destruct ys; intros; try reflexivity; [].
  simpl. rewrite IHxs. reflexivity.
Qed.

Definition expand_list_helper {A} (default : A) (ls : list A) (n : nat) (idx : nat) : list A
  := nat_rect
       (fun _ => nat -> list A)
       (fun _ => nil)
       (fun n' rec_call idx
        => cons (List.nth_default default ls idx) (rec_call (S idx)))
       n
       idx.
Definition expand_list {A} (default : A) (ls : list A) (n : nat) : list A
  := expand_list_helper default ls n 0.

Lemma expand_list_helper_correct {A} (default : A) (ls : list A) (n idx : nat) (H : (idx + n <= length ls)%nat)
  : expand_list_helper default ls n idx
    = List.firstn n (List.skipn idx ls).
Proof.
  cbv [expand_list_helper]; revert idx H.
  induction n as [|n IHn]; cbn; intros.
  { reflexivity. }
  { rewrite IHn by omega.
    erewrite (@skipn_nth_default _ idx ls) by omega.
    reflexivity. }
Qed.

Lemma expand_list_correct (n : nat) {A} (default : A) (ls : list A) (H : List.length ls = n)
  : expand_list default ls n = ls.
Proof.
  subst; cbv [expand_list]; rewrite expand_list_helper_correct by reflexivity.
  rewrite skipn_0, firstn_all; reflexivity.
Qed.

Ltac expand_lists _ :=
  let default_for A :=
      match goal with
      | _ => (eval lazy in (_ : pointed A))
      | _ => let __ := match goal with _ => idtac "Warning: could not infer a default value for list type" A end in
             constr:(I : I)
      end in
  let T := lazymatch goal with |- _ = _ :> ?T => T end in
  let v := fresh in
  evar (v : T); transitivity v;
  [ subst v
  | repeat match goal with
           | [ H : @List.length ?A ?f = ?n |- context[?f] ]
             => let v := default_for A in
                rewrite <- (@expand_list_correct n A v f H);
                clear H
           end;
    lazymatch goal with
    | [ H : List.length ?f = _ |- context[?f] ]
      => fail 0 "Could not expand list" f
    | _ => idtac
    end;
    subst v; reflexivity ].

Lemma single_list_rect_to_match A (P:list A -> Type) (Pnil: P nil) (PS: forall a tl, P (a :: tl)) ls :
  @list_rect A P Pnil (fun a tl _ => PS a tl) ls = match ls with
                                                   | cons a tl => PS a tl
                                                   | nil => Pnil
                                                   end.
Proof. destruct ls; reflexivity. Qed.

Lemma partition_app A (f : A -> bool) (a b : list A)
  : partition f (a ++ b) = (fst (partition f a) ++ fst (partition f b),
                            snd (partition f a) ++ snd (partition f b)).
Proof.
  revert b; induction a, b; cbn; rewrite ?app_nil_r; eta_expand; try reflexivity.
  rewrite !IHa; cbn; break_match; reflexivity.
Qed.

Lemma flat_map_map A B C (f : A -> B) (g : B -> list C) (xs : list A)
  : flat_map g (map f xs) = flat_map (fun x => g (f x)) xs.
Proof. induction xs; cbn; congruence. Qed.
Lemma flat_map_singleton A B (f : A -> B) (xs : list A)
  : flat_map (fun x => cons (f x) nil) xs = map f xs.
Proof. induction xs; cbn; congruence. Qed.
Lemma flat_map_ext A B (f g : A -> list B) xs (H : forall x, In x xs -> f x = g x)
  : flat_map f xs = flat_map g xs.
Proof. induction xs; cbn in *; [ reflexivity | rewrite IHxs; f_equal ]; intros; intuition auto. Qed.
Global Instance flat_map_Proper A B : Proper (pointwise_relation _ eq ==> eq ==> eq) (@flat_map A B).
Proof. repeat intro; subst; apply flat_map_ext; auto. Qed.

Global Instance map_Proper_eq {A B} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.map A B) | 1.
Proof. repeat intro; subst; apply pointwise_map; repeat intro; eauto. Qed.
Global Instance flat_map_Proper_eq {A B} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.flat_map A B) | 1.
Proof. repeat intro; subst; apply flat_map_Proper; repeat intro; eauto. Qed.
Global Instance partition_Proper {A} : Proper (pointwise_relation _ eq ==> eq ==> eq) (@List.partition A).
Proof.
  cbv [pointwise_relation]; intros f g Hfg ls ls' ?; subst ls'.
  induction ls as [|l ls IHls]; cbn [partition]; rewrite ?IHls, ?Hfg; reflexivity.
Qed.
Global Instance partition_Proper_eq {A} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.partition A) | 1.
Proof. repeat intro; subst; apply partition_Proper; repeat intro; eauto. Qed.
Global Instance fold_right_Proper {A B} : Proper (pointwise_relation _ (pointwise_relation _ eq) ==> eq ==> eq ==> eq) (@fold_right A B) | 1.
Proof.
  cbv [pointwise_relation]; intros f g Hfg x y ? ls ls' ?; subst y ls'; revert x.
  induction ls as [|l ls IHls]; cbn [fold_right]; intro; rewrite ?IHls, ?Hfg; reflexivity.
Qed.
Global Instance fold_right_Proper_eq {A B} : Proper ((eq ==> eq ==> eq) ==> eq ==> eq ==> eq) (@fold_right A B) | 1.
Proof. cbv [respectful]; repeat intro; subst; apply fold_right_Proper; repeat intro; eauto. Qed.

Lemma partition_map A B (f : B -> bool) (g : A -> B) xs
  : partition f (map g xs) = (map g (fst (partition (fun x => f (g x)) xs)),
                              map g (snd (partition (fun x => f (g x)) xs))).
Proof. induction xs; cbn; [ | rewrite !IHxs ]; break_match; reflexivity. Qed.
Lemma map_fst_partition A B (f : B -> bool) (g : A -> B) xs
  : map g (fst (partition (fun x => f (g x)) xs)) = fst (partition f (map g xs)).
Proof. rewrite partition_map; reflexivity. Qed.
Lemma map_snd_partition A B (f : B -> bool) (g : A -> B) xs
  : map g (snd (partition (fun x => f (g x)) xs)) = snd (partition f (map g xs)).
Proof. rewrite partition_map; reflexivity. Qed.
Lemma partition_In A (f:A -> bool) xs : forall x, @In A x xs <-> @In A x (if f x then fst (partition f xs) else snd (partition f xs)).
Proof.
  intro x; destruct (f x) eqn:?; split; intros; repeat apply conj; revert dependent x;
    (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto));
    congruence.
Qed.
Lemma fst_partition_In A f xs : forall x, @In A x (fst (partition f xs)) <-> f x = true /\ @In A x xs.
Proof.
  intro x; split; intros; repeat apply conj; revert dependent x;
    (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto));
    congruence.
Qed.
Lemma snd_partition_In A f xs : forall x, @In A x (snd (partition f xs)) <-> f x = false /\ @In A x xs.
Proof.
  intro x; split; intros; repeat apply conj; revert dependent x;
    (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto));
    congruence.
Qed.

Lemma list_rect_map A B P (f : A -> B) N C ls
  : @list_rect B P N C (map f ls) = @list_rect A (fun ls => P (map f ls)) N (fun x xs rest => C (f x) (map f xs) rest) ls.
Proof. induction ls as [|x xs IHxs]; cbn; [ | rewrite IHxs ]; reflexivity. Qed.
Lemma flat_map_app A B (f : A -> list B) xs ys
  : flat_map f (xs ++ ys) = flat_map f xs ++ flat_map f ys.
Proof. induction xs as [|x xs IHxs]; cbn; rewrite ?IHxs, <- ?app_assoc; reflexivity. Qed.
Hint Rewrite flat_map_app : push_flat_map.
Lemma map_flat_map A B C (f : A -> list B) (g : B -> C) xs
  : map g (flat_map f xs) = flat_map (fun x => map g (f x)) xs.
Proof. induction xs as [|x xs IHxs]; cbn; rewrite ?map_app; congruence. Qed.

Lemma combine_map_map A B C D (f : A -> B) (g : C -> D) xs ys
  : combine (map f xs) (map g ys) = map (fun ab => (f (fst ab), g (snd ab))) (combine xs ys).
Proof. revert ys; induction xs, ys; cbn; congruence. Qed.
Lemma combine_map_l A B C (f : A -> B) xs ys
  : @combine B C (map f xs) ys = map (fun ab => (f (fst ab), snd ab)) (combine xs ys).
Proof. rewrite <- combine_map_map with (f:=f) (g:=fun x => x), map_id; reflexivity. Qed.
Lemma combine_map_r A B C (f : B -> C) xs ys
  : @combine A C xs (map f ys) = map (fun ab => (fst ab, f (snd ab))) (combine xs ys).
Proof. rewrite <- combine_map_map with (g:=f) (f:=fun x => x), map_id; reflexivity. Qed.
Lemma combine_same A xs
  : @combine A A xs xs = map (fun x => (x, x)) xs.
Proof. induction xs; cbn; congruence. Qed.
Lemma if_singleton A (b:bool) (x y : A) : (if b then x::nil else y::nil) = (if b then x else y)::nil.
Proof. now case b. Qed.
Lemma flat_map_if_In A B (b : A -> bool) (f g : A -> list B) xs (b' : bool)
  : (forall v, In v xs -> b v = b') -> flat_map (fun x => if b x then f x else g x) xs = if b' then flat_map f xs else flat_map g xs.
Proof. induction xs as [|x xs IHxs]; cbn; [ | intro H; rewrite IHxs, H by eauto ]; case b'; reflexivity. Qed.
Lemma flat_map_if_In_sumbool A B X Y (b : forall a : A, sumbool (X a) (Y a)) (f g : A -> list B) xs (b' : bool)
  : (forall v, In v xs -> (if b v then true else false) = b') -> flat_map (fun x => if b x then f x else g x) xs = if b' then flat_map f xs else flat_map g xs.
Proof.
  intro H; erewrite <- flat_map_if_In by refine H.
  apply flat_map_Proper; [ intro | reflexivity ]; break_innermost_match; reflexivity.
Qed.
Lemma map_if_In A B (b : A -> bool) (f g : A -> B) xs (b' : bool)
  : (forall v, In v xs -> b v = b') -> map (fun x => if b x then f x else g x) xs = if b' then map f xs else map g xs.
Proof. induction xs as [|x xs IHxs]; cbn; [ | intro H; rewrite IHxs, H by eauto ]; case b'; reflexivity. Qed.
Lemma map_if_In_sumbool A B X Y (b : forall a : A, sumbool (X a) (Y a)) (f g : A -> B) xs (b' : bool)
  : (forall v, In v xs -> (if b v then true else false) = b') -> map (fun x => if b x then f x else g x) xs = if b' then map f xs else map g xs.
Proof.
  intro H; erewrite <- map_if_In by refine H.
  apply map_ext_in; intro; break_innermost_match; reflexivity.
Qed.
Lemma fold_right_map A B C (f : A -> B) xs (F : _ -> _ -> C) v
  : fold_right F v (map f xs) = fold_right (fun x y => F (f x) y) v xs.
Proof. revert v; induction xs; cbn; intros; congruence. Qed.
Lemma fold_right_flat_map A B C (f : A -> list B) xs (F : _ -> _ -> C) v
  : fold_right F v (flat_map f xs) = fold_right (fun x y => fold_right F y (f x)) v xs.
Proof. revert v; induction xs; cbn; intros; rewrite ?fold_right_app; congruence. Qed.

Lemma fold_right_id_ext A B f v xs : (forall x y, f x y = y) -> @fold_right A B f v xs = v.
Proof. induction xs; cbn; intro H; rewrite ?H; auto. Qed.
Lemma nth_default_repeat A (v:A) n (d:A) i : nth_default d (repeat v n) i = if dec (i < n)%nat then v else d.
Proof.
  revert i; induction n as [|n IHn], i; cbn; try reflexivity.
  rewrite nth_default_cons_S, IHn; do 2 edestruct dec; try reflexivity; omega.
Qed.
Lemma fold_right_if_dec_eq_seq A start len i f (x v : A)
  : ((start <= i < start + len)%nat -> f i v = x)
    -> (forall j v, (i <> j)%nat -> f j v = v)
    -> fold_right f v (seq start len) = if dec (start <= i < start + len)%nat then x else v.
Proof.
  revert start v; induction len as [|len IHlen]; intros start v H H'; [ | rewrite seq_snoc, fold_right_app; cbn [fold_right] ].
  { edestruct dec; try reflexivity; omega. }
  { destruct (dec (i = (start + len)%nat)); subst; [ | rewrite H' by omega ];
      rewrite IHlen; eauto; intros; clear IHlen;
        repeat match goal with
               | _ => reflexivity
               | _ => omega
               | _ => progress subst
               | _ => progress specialize_by omega
               | [ H : context[dec ?P] |- _ ] => destruct (dec P)
               | [ |- context[dec ?P] ] => destruct (dec P)
               | [ H : f _ _ = _ |- _ ] => rewrite H
               | [ H : forall j, f j ?v = _ |- context[f _ ?v] ] => rewrite H
               end. }
Qed.

Lemma fold_left_push A (x y : A) (f : A -> A -> A)
      (f_assoc : forall x y z, f (f x y) z = f x (f y z))
      ls
  : f x (fold_left f ls y) = fold_left f ls (f x y).
Proof.
  revert x y; induction ls as [|l ls IHls]; cbn; [ reflexivity | ].
  intros; rewrite IHls; f_equal; auto.
Qed.

Lemma fold_right_push A (x y : A) (f : A -> A -> A)
      (f_assoc : forall x y z, f (f x y) z = f x (f y z))
      ls
  : f (fold_right f x ls) y = fold_right f (f x y) ls.
Proof.
  rewrite <- (rev_involutive ls), !fold_left_rev_right, fold_left_push with (f:=fun x y => f y x); auto.
Qed.

Lemma nth_error_combine {A B} n (ls1 : list A) (ls2 : list B)
  : nth_error (combine ls1 ls2) n = match nth_error ls1 n, nth_error ls2 n with
                                    | Some v1, Some v2 => Some (v1, v2)
                                    | _, _ => None
                                    end.
Proof.
  revert ls2 n; induction ls1 as [|l1 ls1 IHls1], ls2, n; cbn [combine nth_error]; try reflexivity; auto.
  edestruct nth_error; reflexivity.
Qed.

Lemma combine_repeat {A B} (a : A) (b : B) n : combine (repeat a n) (repeat b n) = repeat (a, b) n.
Proof. induction n; cbn; congruence. Qed.

Lemma combine_rev_rev_samelength {A B} ls1 ls2 : length ls1 = length ls2 -> @combine A B (rev ls1) (rev ls2) = rev (combine ls1 ls2).
Proof.
  revert ls2; induction ls1 as [|? ? IHls1], ls2; cbn in *; try congruence; intros.
  rewrite combine_app_samelength, IHls1 by (rewrite ?rev_length; congruence); cbn [combine].
  reflexivity.
Qed.

Lemma map_nth_default_seq {A} (d:A) n ls
  : length ls = n -> List.map (List.nth_default d ls) (List.seq 0 n) = ls.
Proof.
  intro; subst.
  rewrite <- (List.rev_involutive ls); generalize (List.rev ls); clear ls; intro ls.
  rewrite List.rev_length.
  induction ls; cbn [length List.rev]; [ reflexivity | ].
  rewrite seq_snoc, List.map_app.
  apply f_equal2; [ | cbn; rewrite nth_default_app, List.rev_length, Nat.sub_diag ];
    [ etransitivity; [ | eassumption ]; apply List.map_ext_in; intro; rewrite Lists.List.in_seq;
      rewrite nth_default_app, List.rev_length; intros
    | ].
  all: edestruct lt_dec; try (exfalso; lia).
  all: reflexivity.
Qed.

Lemma nth_error_firstn A ls n i
  : List.nth_error (@List.firstn A n ls) i = if lt_dec i n then List.nth_error ls i else None.
Proof.
  revert ls i; induction n, ls, i; cbn; try reflexivity; destruct lt_dec; try reflexivity; rewrite IHn.
  all: destruct lt_dec; try reflexivity; omega.
Qed.

Lemma nth_error_rev A n ls : List.nth_error (@List.rev A ls) n = if lt_dec n (length ls) then List.nth_error ls (length ls - S n) else None.
Proof.
  destruct lt_dec; [ | rewrite nth_error_length_error; rewrite ?List.rev_length; try reflexivity; omega ].
  revert dependent n; induction ls as [|x xs IHxs]; cbn [length List.rev]; try omega; try reflexivity; intros.
  { destruct n; reflexivity. }
  { rewrite nth_error_app, List.rev_length, Nat.sub_succ.
    destruct lt_dec.
    { rewrite IHxs by omega.
      rewrite <- (Nat.succ_pred_pos (length xs - n)) by omega.
      cbn [List.nth_error].
      f_equal; omega. }
    { assert (n = length xs) by omega; subst.
      rewrite Nat.sub_diag.
      reflexivity. } }
Qed.

Lemma concat_fold_right_app A ls
  : @List.concat A ls = List.fold_right (@List.app A) nil ls.
Proof. induction ls; cbn; eauto. Qed.

Lemma map_update_nth_ext {A B n} f1 f2 f3 ls1 ls2
  : map f3 ls1 = ls2
    -> (forall x, List.In x ls1 -> f3 (f2 x) = f1 (f3 x))
    -> map f3 (@update_nth A n f2 ls1) = @update_nth B n f1 ls2.
Proof.
  revert ls1 ls2; induction n as [|n IHn], ls1 as [|x1 xs1], ls2 as [|x2 xs2]; cbn; intros H0 H1; try discriminate; try reflexivity.
  all: inversion H0; clear H0; subst.
  all: f_equal; eauto using or_introl.
Qed.

Lemma push_f_list_rect {P P'} (f : P -> P') {A} Pnil Pcons Pcons' ls
      (Hcons : forall x xs rec, f (Pcons x xs rec)
                                = Pcons' x xs (f rec))
  : f (list_rect (fun _ : list A => P) Pnil Pcons ls)
    = list_rect
        (fun _ => _)
        (f Pnil)
        Pcons'
        ls.
Proof.
  induction ls as [|x xs IHxs]; cbn [list_rect]; [ reflexivity | ].
  rewrite Hcons, IHxs; reflexivity.
Qed.

Lemma eq_app_list_rect {A} (ls1 ls2 : list A)
  : List.app ls1 ls2 = list_rect _ ls2 (fun x _ rec => x :: rec) ls1.
Proof. revert ls2; induction ls1, ls2; cbn; f_equal; eauto. Qed.
Lemma eq_flat_map_list_rect {A B} f (ls : list A)
  : @flat_map A B f ls = list_rect _ nil (fun x _ rec => f x ++ rec) ls.
Proof. induction ls; cbn; eauto. Qed.
Lemma eq_partition_list_rect {A} f (ls : list A)
  : @partition A f ls = list_rect _ (nil, nil) (fun x _ '(a, b) => bool_rect (fun _ => _) (x :: a, b) (a, x :: b) (f x)) ls.
Proof. induction ls; cbn; eauto. Qed.
Lemma eq_fold_right_list_rect {A B} f v (ls : list _)
  : @fold_right A B f v ls = list_rect _ v (fun x _ rec => f x rec) ls.
Proof. induction ls; cbn; eauto. Qed.
Lemma eq_map_list_rect {A B} f (ls : list _)
  : @List.map A B f ls = list_rect _ nil (fun x _ rec => f x :: rec) ls.
Proof. induction ls; cbn; eauto. Qed.

Lemma map_repeat {A B} (f : A -> B) v k
  : List.map f (List.repeat v k) = List.repeat (f v) k.
Proof. induction k; cbn; f_equal; assumption. Qed.
Lemma map_const {A B} (v : B) (ls : list A)
  : List.map (fun _ => v) ls = List.repeat v (List.length ls).
Proof. induction ls; cbn; f_equal; assumption. Qed.

Lemma Forall2_update_nth {A B f g n R ls1 ls2}
  : @List.Forall2 A B R ls1 ls2
    -> (forall v1, nth_error ls1 n = Some v1 -> forall v2, nth_error ls2 n = Some v2 -> R v1 v2 -> R (f v1) (g v2))
    -> @List.Forall2 A B R (update_nth n f ls1) (update_nth n g ls2).
Proof using Type.
  intro H; revert n; induction H, n; cbn [nth_error update_nth].
  all: repeat first [ progress intros
                    | progress specialize_by_assumption
                    | assumption
                    | match goal with
                      | [ |- List.Forall2 _ _ _ ] => constructor
                      | [ H : forall x, Some _ = Some x -> _ |- _ ] => specialize (H _ eq_refl)
                      | [ IH : forall n : nat, _, H : forall v1, nth_error ?l ?n = Some v1 -> _ |- _ ] => specialize (IH n H)
                      end ].
Qed.

Fixpoint remove_duplicates' {A} (beq : A -> A -> bool) (ls : list A) : list A
  := match ls with
     | nil => nil
     | cons x xs => if existsb (beq x) xs
                    then @remove_duplicates' A beq xs
                    else x :: @remove_duplicates' A beq xs
     end.
Definition remove_duplicates {A} (beq : A -> A -> bool) (ls : list A) : list A
  := List.rev (remove_duplicates' beq (List.rev ls)).

Lemma InA_remove_duplicates'
      {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      {R_Transitive : Transitive R}
      (A_bl : forall x y, A_beq x y = true -> R x y)
      (ls : list A)
  : forall x, InA R x (remove_duplicates' A_beq ls) <-> InA R x ls.
Proof using Type.
  induction ls as [|x xs IHxs]; intro y; [ reflexivity | ].
  cbn [remove_duplicates']; break_innermost_match;
    rewrite ?InA_cons, IHxs; [ | reflexivity ].
  split; [ now auto | ].
  intros [?|?]; subst; auto; [].
  rewrite existsb_exists in *.
  destruct_head'_ex; destruct_head'_and.
  match goal with H : _ |- _ => apply A_bl in H end.
  rewrite InA_alt.
  eexists; split; [ | eassumption ].
  etransitivity; eassumption.
Qed.

Lemma InA_remove_duplicates
      {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      {R_Transitive : Transitive R}
      (A_bl : forall x y, A_beq x y = true -> R x y)
      (ls : list A)
  : forall x, InA R x (remove_duplicates A_beq ls) <-> InA R x ls.
Proof using Type.
  cbv [remove_duplicates]; intro.
  rewrite InA_rev, InA_remove_duplicates', InA_rev; auto; reflexivity.
Qed.

Lemma InA_eq_In_iff {A} x ls
  : InA eq x ls <-> @List.In A x ls.
Proof using Type.
  rewrite InA_alt.
  repeat first [ progress destruct_head'_and
               | progress destruct_head'_ex
               | progress subst
               | solve [ eauto ]
               | apply conj
               | progress intros ].
Qed.

Lemma NoDupA_eq_NoDup {A} ls
  : @NoDupA A eq ls <-> NoDup ls.
Proof using Type.
  split; intro H; induction H; constructor; eauto;
    (idtac + rewrite <- InA_eq_In_iff + rewrite InA_eq_In_iff); assumption.
Qed.

Lemma in_remove_duplicates'
      {A} (A_beq : A -> A -> bool) (A_bl : forall x y, A_beq x y = true -> x = y)
      (ls : list A)
  : forall x, List.In x (remove_duplicates' A_beq ls) <-> List.In x ls.
Proof using Type.
  intro x; rewrite <- !InA_eq_In_iff; apply InA_remove_duplicates'; eauto; exact _.
Qed.

Lemma in_remove_duplicates
      {A} (A_beq : A -> A -> bool) (A_bl : forall x y, A_beq x y = true -> x = y)
      (ls : list A)
  : forall x, List.In x (remove_duplicates A_beq ls) <-> List.In x ls.
Proof using Type.
  intro x; rewrite <- !InA_eq_In_iff; apply InA_remove_duplicates; eauto; exact _.
Qed.

Lemma NoDupA_remove_duplicates' {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      {R_Transitive : Transitive R}
      (A_lb : forall x y, A_beq x y = true -> R x y)
      (A_bl : forall x y, R x y -> A_beq x y = true)
      (ls : list A)
  : NoDupA R (remove_duplicates' A_beq ls).
Proof using Type.
  induction ls as [|x xs IHxs]; [ now constructor | ].
  cbn [remove_duplicates']; break_innermost_match; [ assumption | constructor; auto ]; [].
  intro H'.
  cut (false = true); [ discriminate | ].
  match goal with H : _ = false |- _ => rewrite <- H end.
  rewrite existsb_exists in *.
  rewrite InA_remove_duplicates' in H' by eauto.
  rewrite InA_alt in H'.
  destruct_head'_ex; destruct_head'_and.
  eauto.
Qed.

Lemma NoDupA_remove_duplicates {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      {R_Equivalence : Equivalence R}
      (A_lb : forall x y, A_beq x y = true -> R x y)
      (A_bl : forall x y, R x y -> A_beq x y = true)
      (ls : list A)
  : NoDupA R (remove_duplicates A_beq ls).
Proof using Type.
  cbv [remove_duplicates].
  apply NoDupA_rev; [ assumption | ].
  apply NoDupA_remove_duplicates'; auto; exact _.
Qed.

Lemma NoDup_remove_duplicates' {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      (A_lb : forall x y, A_beq x y = true -> x = y)
      (A_bl : forall x y, x = y -> A_beq x y = true)
      (ls : list A)
  : NoDup (remove_duplicates' A_beq ls).
Proof using Type.
  apply NoDupA_eq_NoDup, NoDupA_remove_duplicates'; auto; exact _.
Qed.

Lemma NoDup_remove_duplicates {A} (A_beq : A -> A -> bool)
      (A_lb : forall x y, A_beq x y = true -> x = y)
      (A_bl : forall x y, x = y -> A_beq x y = true)
      (ls : list A)
  : NoDup (remove_duplicates A_beq ls).
Proof using Type.
  apply NoDupA_eq_NoDup, NoDupA_remove_duplicates; auto; exact _.
Qed.

Lemma remove_duplicates'_eq_NoDupA {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      (A_lb : forall x y, A_beq x y = true -> R x y)
      (ls : list A)
  : NoDupA R ls -> remove_duplicates' A_beq ls = ls.
Proof using Type.
  intro H; induction H as [|x xs H0 H1 IHxs]; [ reflexivity | ].
  cbn [remove_duplicates'].
  rewrite IHxs.
  repeat first [ break_innermost_match_step
               | reflexivity
               | progress destruct_head'_ex
               | progress destruct_head'_and
               | progress rewrite existsb_exists in *
               | progress rewrite InA_alt in *
               | match goal with
                 | [ H : ~(exists x, and _ _) |- _ ]
                   => specialize (fun x H0 H1 => H (ex_intro _ x (conj H0 H1)))
                 end
               | solve [ exfalso; eauto ] ].
Qed.

Lemma remove_duplicates_eq_NoDupA {A} (A_beq : A -> A -> bool)
      (R : A -> A -> Prop)
      {R_equiv : Equivalence R}
      (A_lb : forall x y, A_beq x y = true -> R x y)
      (ls : list A)
  : NoDupA R ls -> remove_duplicates A_beq ls = ls.
Proof using Type.
  cbv [remove_duplicates]; intro.
  erewrite remove_duplicates'_eq_NoDupA by (eauto + apply NoDupA_rev; eauto).
  rewrite rev_involutive; reflexivity.
Qed.

Lemma remove_duplicates'_eq_NoDup {A} (A_beq : A -> A -> bool)
      (A_lb : forall x y, A_beq x y = true -> x = y)
      (ls : list A)
  : NoDup ls -> remove_duplicates' A_beq ls = ls.
Proof using Type.
  intro H; apply remove_duplicates'_eq_NoDupA with (R:=eq); eauto.
  now apply NoDupA_eq_NoDup.
Qed.

Lemma remove_duplicates_eq_NoDup {A} (A_beq : A -> A -> bool)
      (A_lb : forall x y, A_beq x y = true -> x = y)
      (ls : list A)
  : NoDup ls -> remove_duplicates A_beq ls = ls.
Proof using Type.
  intro H; apply remove_duplicates_eq_NoDupA with (R:=eq); eauto; try exact _.
  now apply NoDupA_eq_NoDup.
Qed.

Lemma eq_repeat_nat_rect {A} x n
  : @List.repeat A x n
    = nat_rect _ nil (fun k repeat_k => x :: repeat_k) n.
Proof using Type. induction n; cbn; f_equal; assumption. Qed.

Lemma eq_firstn_nat_rect {A} n ls
  : @List.firstn A n ls
    = nat_rect
        _
        (fun _ => nil)
        (fun n' firstn_n' ls
         => match ls with
            | nil => nil
            | cons x xs => x :: firstn_n' xs
            end)
        n ls.
Proof using Type. revert ls; induction n, ls; cbn; f_equal; auto. Qed.

Lemma eq_skipn_nat_rect {A} n ls
  : @List.skipn A n ls
    = nat_rect
        _
        (fun ls => ls)
        (fun n' skipn_n' ls
         => match ls with
            | nil => nil
            | cons x xs => skipn_n' xs
            end)
        n ls.
Proof using Type. revert ls; induction n, ls; cbn; f_equal; auto. Qed.

Lemma eq_combine_list_rect {A B} xs ys
  : @List.combine A B xs ys
    = list_rect
        _
        (fun _ => nil)
        (fun x xs combine_xs ys
         => match ys with
            | nil => nil
            | y :: ys => (x, y) :: combine_xs ys
            end)
        xs ys.
Proof using Type. revert ys; induction xs, ys; cbn; f_equal; auto. Qed.

Lemma eq_length_list_rect {A} xs
  : @List.length A xs
    = (list_rect _)
        0%nat
        (fun _ xs length_xs => S length_xs)
        xs.
Proof using Type. induction xs; cbn; f_equal; auto. Qed.

Lemma eq_rev_list_rect {A} xs
  : @List.rev A xs
    = (list_rect _)
        nil
        (fun x xs rev_xs => rev_xs ++ [x])
        xs.
Proof using Type. induction xs; cbn; f_equal; auto. Qed.

Lemma eq_update_nth_nat_rect {A} n f xs
  : @update_nth A n f xs
    = (nat_rect _)
        (fun xs => match xs with
                   | nil => nil
                   | x' :: xs' => f x' :: xs'
                   end)
        (fun n' update_nth_n' xs
         => match xs with
            | nil => nil
            | x' :: xs' => x' :: update_nth_n' xs'
            end)
        n
        xs.
Proof using Type. revert xs; induction n, xs; cbn; f_equal; auto. Qed.