aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ListUtil.v
blob: 0426c08347c3a92d3dbfed31da332128693ed6e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
Require Import Coq.Lists.List.
Require Import Coq.omega.Omega.
Require Import Coq.Arith.Peano_dec.
Require Import Crypto.Tactics.VerdiTactics.

Ltac boring :=
  simpl; intuition;
  repeat match goal with
           | [ H : _ |- _ ] => rewrite H; clear H
           | _ => progress autounfold in *
           | _ => progress try autorewrite with core
           | _ => progress simpl in *
           | _ => progress intuition
         end; eauto.

Lemma nth_error_nil_error : forall {A} n, nth_error (@nil A) n = None.
Proof.
intros. induction n; boring.
Qed.

Ltac nth_tac' :=
  intros; simpl in *; unfold error,value in *; repeat progress (match goal with
    | [  |- context[nth_error nil ?n] ] => rewrite nth_error_nil_error
    | [ H: ?x = Some _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [ H: ?x = None _  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x
    | [  |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] => case_eq (nth_error xs i); intros
    | [ |- context[(if lt_dec ?a ?b then _ else _) = _] ] => destruct (lt_dec a b)
    | [ |- context[_ = (if lt_dec ?a ?b then _ else _)] ] => destruct (lt_dec a b)
    | [ H: context[(if lt_dec ?a ?b then _ else _) = _] |- _ ] => destruct (lt_dec a b)
    | [ H: context[_ = (if lt_dec ?a ?b then _ else _)] |- _ ] => destruct (lt_dec a b)
    | [ H: _ /\ _ |- _ ] => destruct H
    | [ H: Some _ = Some _ |- _ ] => injection H; clear H; intros; subst
    | [ H: None = Some _  |- _ ] => inversion H
    | [ H: Some _ = None |- _ ] => inversion H
    | [ |- Some _ = Some _ ] => apply f_equal
  end); eauto; try (autorewrite with list in *); try omega; eauto.
Lemma nth_error_map : forall A B (f:A->B) i xs y,
  nth_error (map f xs) i = Some y ->
  exists x, nth_error xs i = Some x /\ f x = y.
Proof.
  induction i; destruct xs; nth_tac'.
Qed.

Lemma nth_error_seq : forall i start len,
  nth_error (seq start len) i =
  if lt_dec i len
  then Some (start + i)
  else None.
  induction i; destruct len; nth_tac'; erewrite IHi; nth_tac'.
Qed.

Lemma nth_error_error_length : forall A i (xs:list A), nth_error xs i = None ->
  i >= length xs.
Proof.
  induction i; destruct xs; nth_tac'; try specialize (IHi _ H); omega.
Qed.

Lemma nth_error_value_length : forall A i (xs:list A) x, nth_error xs i = Some x ->
  i < length xs.
Proof.
  induction i; destruct xs; nth_tac'; try specialize (IHi _ _ H); omega.
Qed.

Lemma nth_error_length_error : forall A i (xs:list A),
  i >= length xs ->
  nth_error xs i = None.
Proof.
  induction i; destruct xs; nth_tac'; rewrite IHi by omega; auto.
Qed.
Hint Resolve nth_error_length_error.

Lemma map_nth_default : forall (A B : Type) (f : A -> B) n x y l,
  (n < length l) -> nth_default y (map f l) n = f (nth_default x l n).
Proof.
  intros.
  unfold nth_default.
  erewrite map_nth_error.
  reflexivity.
  nth_tac'.
  pose proof (nth_error_error_length A n l H0).
  omega.
Qed.

Ltac nth_tac :=
  repeat progress (try nth_tac'; try (match goal with
    | [ H: nth_error (map _ _) _ = Some _ |- _ ] => destruct (nth_error_map _ _ _ _ _ _ H); clear H
    | [ H: nth_error (seq _ _) _ = Some _ |- _ ] => rewrite nth_error_seq in H
    | [H: nth_error _ _ = None |- _ ] => specialize (nth_error_error_length _ _ _ H); intro; clear H
  end)).

Lemma app_cons_app_app : forall T xs (y:T) ys, xs ++ y :: ys = (xs ++ (y::nil)) ++ ys.
Proof.
	induction xs; boring.
Qed.

(* xs[n] := x *)
Fixpoint set_nth {T} n x (xs:list T) {struct n} :=
	match n with
	| O => match xs with
				 | nil => nil
				 | x'::xs' => x::xs'
				 end
	| S n' =>  match xs with
				 | nil => nil
				 | x'::xs' => x'::set_nth n' x xs'
				 end
  end.

Lemma nth_set_nth : forall m {T} (xs:list T) (n:nat) (x x':T),
  nth_error (set_nth m x xs) n =
  if eq_nat_dec n m
  then (if lt_dec n (length xs) then Some x else None)
  else nth_error xs n.
Proof.
	induction m.

	destruct n, xs; auto.

	intros; destruct xs, n; auto.
	simpl; unfold error; match goal with
		[ |- None = if ?x then None else None ] => destruct x
	end; auto.

	simpl nth_error; erewrite IHm by auto; clear IHm.
	destruct (eq_nat_dec n m), (eq_nat_dec (S n) (S m)); nth_tac.
Qed.

Lemma length_set_nth : forall {T} i (x:T) xs, length (set_nth i x xs) = length xs.
  induction i, xs; boring.
Qed.

Lemma nth_error_length_exists_value : forall {A} (i : nat) (xs : list A),
  (i < length xs)%nat -> exists x, nth_error xs i = Some x.
Proof.
  induction i, xs; boring; try omega.
Qed.

Lemma nth_error_length_not_error : forall {A} (i : nat) (xs : list A),
  nth_error xs i = None -> (i < length xs)%nat -> False.
Proof.
  intros.
  destruct (nth_error_length_exists_value i xs); intuition; congruence.
Qed.

Lemma nth_error_value_eq_nth_default : forall {T} i xs (x d:T),
  nth_error xs i = Some x -> forall d, nth_default d xs i = x.
Proof.
  unfold nth_default; boring.
Qed.

Lemma skipn0 : forall {T} (xs:list T), skipn 0 xs = xs.
Proof.
  auto.
Qed.

Lemma firstn0 : forall {T} (xs:list T), firstn 0 xs = nil.
Proof.
  auto.
Qed.

Definition splice_nth {T} n (x:T) xs := firstn n xs ++ x :: skipn (S n) xs.
Hint Unfold splice_nth.

Lemma splice_nth_equiv_set_nth : forall {T} n x (xs:list T),
  splice_nth n x xs =
  if lt_dec n (length xs)
  then set_nth n x xs
  else xs ++ x::nil.
Proof.
  induction n, xs; boring.
  break_if; break_if; auto; omega.
Qed.

Lemma splice_nth_equiv_set_nth_set : forall {T} n x (xs:list T),
  n < length xs ->
  splice_nth n x xs = set_nth n x xs.
Proof.
  intros.
  rewrite splice_nth_equiv_set_nth.
  break_if; auto; omega.
Qed.

Lemma splice_nth_equiv_set_nth_snoc : forall {T} n x (xs:list T),
  n >= length xs ->
  splice_nth n x xs = xs ++ x::nil.
Proof.
  intros.
  rewrite splice_nth_equiv_set_nth.
  break_if; auto; omega.
Qed.

Lemma set_nth_equiv_splice_nth: forall {T} n x (xs:list T),
  set_nth n x xs =
  if lt_dec n (length xs)
  then splice_nth n x xs
  else xs.
Proof.
  induction n; destruct xs; intros; simpl in *;
    try (rewrite IHn; clear IHn); auto.
  break_if; break_if; auto; omega.
Qed.


Lemma combine_set_nth : forall {A B} n (x:A) xs (ys:list B),
  combine (set_nth n x xs) ys =
    match nth_error ys n with
    | None => combine xs ys
    | Some y => set_nth n (x,y) (combine xs ys)
    end.
Proof.
  (* TODO(andreser): this proof can totally be automated, but requires writing ltac that vets multiple hypotheses at once *)
  induction n, xs, ys; nth_tac; try rewrite IHn; nth_tac;
    try (f_equal; specialize (IHn x xs ys ); rewrite H in IHn; rewrite <- IHn);
    try (specialize (nth_error_value_length _ _ _ _ H); omega).
  assert (Some b0=Some b1) as HA by (rewrite <-H, <-H0; auto).
  injection HA; intros; subst; auto.
Qed.

Lemma nth_error_value_In : forall {T} n xs (x:T),
  nth_error xs n = Some x -> In x xs.
Proof.
  induction n; destruct xs; nth_tac.
Qed.

Lemma In_nth_error_value : forall {T} xs (x:T),
  In x xs -> exists n, nth_error xs n = Some x.
Proof.
  induction xs; nth_tac; break_or_hyp.
  - exists 0; reflexivity.
  - edestruct IHxs; eauto. exists (S x0). eauto.
Qed.

Lemma nth_value_index : forall {T} i xs (x:T),
  nth_error xs i = Some x -> In i (seq 0 (length xs)).
Proof.
  induction i; destruct xs; nth_tac; right.
  rewrite <- seq_shift; apply in_map; eapply IHi; eauto.
Qed.

Lemma nth_error_app : forall {T} n (xs ys:list T), nth_error (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_error xs n
  else nth_error ys (n - length xs).
Proof.
  induction n; destruct xs; nth_tac;
    rewrite IHn; destruct (lt_dec n (length xs)); trivial; omega.
Qed.

Lemma nth_default_app : forall {T} n x (xs ys:list T), nth_default x (xs ++ ys) n =
  if lt_dec n (length xs)
  then nth_default x xs n
  else nth_default x ys (n - length xs).
Proof.
  intros.
  unfold nth_default.
  rewrite nth_error_app.
  destruct (lt_dec n (length xs)); auto.
Qed.

Lemma combine_truncate_r : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine xs (firstn (length xs) ys).
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_truncate_l : forall {A B} (xs : list A) (ys : list B),
  combine xs ys = combine (firstn (length ys) xs) ys.
Proof.
  induction xs; destruct ys; boring.
Qed.

Lemma combine_app_samelength : forall {A B} (xs xs':list A) (ys ys':list B),
  length xs = length ys ->
  combine (xs ++ xs') (ys ++ ys') = combine xs ys ++ combine xs' ys'.
Proof.
  induction xs, xs', ys, ys'; boring; omega.
Qed.

Lemma firstn_nil : forall {A} n, firstn n nil = @nil A.
Proof.
  destruct n; auto.
Qed.

Lemma skipn_nil : forall {A} n, skipn n nil = @nil A.
Proof.
  destruct n; auto.
Qed.

Lemma firstn_app : forall {A} n (xs ys : list A),
  firstn n (xs ++ ys) = firstn n xs ++ firstn (n - length xs) ys.
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma skipn_app : forall {A} n (xs ys : list A),
  skipn n (xs ++ ys) = skipn n xs ++ skipn (n - length xs) ys.
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma firstn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  firstn n (xs ++ ys) = firstn n xs.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Lemma skipn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat ->
  skipn n (xs ++ ys) = skipn n xs ++ ys.
Proof.
  induction n, xs, ys; boring; try omega.
Qed.

Lemma firstn_all : forall {A} n (xs:list A), n = length xs -> firstn n xs = xs.
Proof.
  induction n, xs; boring; omega.
Qed.

Lemma skipn_all : forall {T} n (xs:list T),
  (n >= length xs)%nat ->
  skipn n xs = nil.
Proof.
  induction n, xs; boring; omega.
Qed.

Lemma firstn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  firstn n (l ++ l') = l.
Proof.
  intros.
  rewrite firstn_app_inleft; auto using firstn_all; omega.
Qed.

Lemma skipn_app_sharp : forall {A} n (l l': list A),
  length l = n ->
  skipn n (l ++ l') = l'.
Proof.
  intros.
  rewrite skipn_app_inleft; try rewrite skipn_all; auto; omega.
Qed.

Lemma skipn_length : forall {A} n (xs : list A),
  length (skipn n xs) = (length xs - n)%nat.
Proof.
  induction n, xs; boring.
Qed.

Lemma fold_right_cons : forall {A B} (f:B->A->A) a b bs,
  fold_right f a (b::bs) = f b (fold_right f a bs).
Proof.
  reflexivity.
Qed.

Lemma length_cons : forall {T} (x:T) xs, length (x::xs) = S (length xs).
  reflexivity.
Qed.

Lemma S_pred_nonzero : forall a, (a > 0 -> S (pred a) = a)%nat.
Proof.
  destruct a; omega.
Qed.

Lemma cons_length : forall A (xs : list A) a, length (a :: xs) = S (length xs).
Proof.
  auto.
Qed.

Lemma length0_nil : forall {A} (xs : list A), length xs = 0%nat -> xs = nil.
Proof.
  induction xs; boring; discriminate.
Qed.

Lemma length_snoc : forall {T} xs (x:T),
  length xs = pred (length (xs++x::nil)).
Proof.
  boring; simpl_list; boring.
Qed.

Lemma firstn_combine : forall {A B} n (xs:list A) (ys:list B),
  firstn n (combine xs ys) = combine (firstn n xs) (firstn n ys).
Proof.
  induction n, xs, ys; boring.
Qed.

Lemma combine_nil_r : forall {A B} (xs:list A),
  combine xs (@nil B) = nil.
Proof.
  induction xs; boring.
Qed.

Lemma skipn_combine : forall {A B} n (xs:list A) (ys:list B),
  skipn n (combine xs ys) = combine (skipn n xs) (skipn n ys).
Proof.
  induction n, xs, ys; boring.
  rewrite combine_nil_r; reflexivity.
Qed.

Lemma break_list_last: forall {T} (xs:list T),
  xs = nil \/ exists xs' y, xs = xs' ++ y :: nil.
Proof.
  destruct xs using rev_ind; auto.
  right; do 2 eexists; auto.
Qed.

Lemma break_list_first: forall {T} (xs:list T),
  xs = nil \/ exists x xs', xs = x :: xs'.
Proof.
  destruct xs; auto.
  right; do 2 eexists; auto.
Qed.

Lemma list012 : forall {T} (xs:list T),
  xs = nil
  \/ (exists x, xs = x::nil)
  \/ (exists x xs' y, xs = x::xs'++y::nil).
Proof.
  destruct xs; auto.
  right.
  destruct xs using rev_ind. {
    left; eexists; auto.
  } {
    right; repeat eexists; auto.
  }
Qed.

Lemma nil_length0 : forall {T}, length (@nil T) = 0%nat.
Proof.
  auto.
Qed.

Lemma nth_default_cons : forall {T} (x u0 : T) us, nth_default x (u0 :: us) 0 = u0.
Proof.
  auto.
Qed.

Lemma nth_default_cons_S : forall {A} us (u0 : A) n d,
  nth_default d (u0 :: us) (S n) = nth_default d us n.
Proof.
  boring.
Qed.

Lemma nth_error_Some_nth_default : forall {T} i x (l : list T), (i < length l)%nat ->
  nth_error l i = Some (nth_default x l i).
Proof.
  intros ? ? ? ? i_lt_length.
  destruct (nth_error_length_exists_value _ _ i_lt_length) as [k nth_err_k].
  unfold nth_default.
  rewrite nth_err_k.
  reflexivity.
Qed.

Lemma set_nth_cons : forall {T} (x u0 : T) us, set_nth 0 x (u0 :: us) = x :: us.
Proof.
  auto.
Qed.

Create HintDb distr_length discriminated.
Hint Rewrite
  @nil_length0
  @length_cons
  @app_length
  @rev_length
  @map_length
  @seq_length
  @fold_left_length
  @split_length_l
  @split_length_r
  @firstn_length
  @skipn_length
  @combine_length
  @prod_length
  @length_set_nth
  : distr_length.
Ltac distr_length := autorewrite with distr_length in *;
  try solve [simpl in *; omega].

Lemma cons_set_nth : forall {T} n (x y : T) us,
  y :: set_nth n x us = set_nth (S n) x (y :: us).
Proof.
  induction n; boring.
Qed.

Lemma set_nth_nil : forall {T} n (x : T), set_nth n x nil = nil.
Proof.
  induction n; boring.
Qed.

Lemma nth_default_nil : forall {T} n (d : T), nth_default d nil n = d.
Proof.
  induction n; boring.
Qed.

Lemma skipn_nth_default : forall {T} n us (d : T), (n < length us)%nat ->
 skipn n us = nth_default d us n :: skipn (S n) us.
Proof.
  induction n; destruct us; intros; nth_tac.
  rewrite (IHn us d) at 1 by omega.
  nth_tac.
Qed.

Lemma nth_default_out_of_bounds : forall {T} n us (d : T), (n >= length us)%nat ->
  nth_default d us n = d.
Proof.
  induction n; unfold nth_default; nth_tac; destruct us; nth_tac.
  assert (n >= length us)%nat by omega.
  pose proof (nth_error_length_error _ n us H1).
  rewrite H0 in H2.
  congruence.
Qed.

Ltac nth_error_inbounds :=
  match goal with
  | [ |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] =>
    case_eq (nth_error xs i);
    match goal with
      | [ |- forall _, nth_error xs i = Some _ -> _ ] =>
          let x := fresh "x" in
          let H := fresh "H" in
          intros x H;
          repeat progress erewrite H;
          repeat progress erewrite (nth_error_value_eq_nth_default i xs x); auto
      | [ |- nth_error xs i = None -> _ ] =>
          let H := fresh "H" in
          intros H;
          destruct (nth_error_length_not_error _ _ H);
          try solve [distr_length]
    end;
    idtac
  end.
Ltac set_nth_inbounds :=
  match goal with
  | [ |- context[set_nth ?i ?x ?xs] ] =>
    rewrite (set_nth_equiv_splice_nth i x xs);
    destruct (lt_dec i (length xs));
    match goal with
    | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H
    | [ H :   (i < (length xs))%nat |- _ ] => try solve [distr_length]
    end;
    idtac
  end.

Ltac nth_inbounds := nth_error_inbounds || set_nth_inbounds.

Lemma cons_eq_head : forall {T} (x y:T) xs ys, x::xs = y::ys -> x=y.
Proof.
  intros; solve_by_inversion.
Qed.
Lemma cons_eq_tail : forall {T} (x y:T) xs ys, x::xs = y::ys -> xs=ys.
Proof.
  intros; solve_by_inversion.
Qed.

Lemma map_nth_default_always {A B} (f : A -> B) (n : nat) (x : A) (l : list A)
  : nth_default (f x) (map f l) n = f (nth_default x l n).
Proof.
  revert n; induction l; simpl; intro n; destruct n; [ try reflexivity.. ].
  nth_tac.
Qed.

Lemma fold_right_and_True_forall_In_iff : forall {T} (l : list T) (P : T -> Prop),
  (forall x, In x l -> P x) <-> fold_right and True (map P l).
Proof.
  induction l; intros; simpl; try tauto.
  rewrite <- IHl.
  intuition (subst; auto).
Qed.

Lemma fold_right_invariant : forall {A} P (f: A -> A -> A) l x,
  P x -> (forall y, In y l -> forall z, P z -> P (f y z)) ->
  P (fold_right f x l).
Proof.
  induction l; intros ? ? step; auto.
  simpl.
  apply step; try apply in_eq.
  apply IHl; auto.
  intros y in_y_l.
  apply (in_cons a) in in_y_l.
  auto.
Qed.

Lemma In_firstn : forall {T} n l (x : T), In x (firstn n l) -> In x l.
Proof.
  induction n; destruct l; boring.
Qed.

Lemma firstn_firstn : forall {A} m n (l : list A), (n <= m)%nat ->
  firstn n (firstn m l) = firstn n l.
Proof.
  induction m; destruct n; intros; try omega; auto.
  destruct l; auto.
  simpl.
  f_equal.
  apply IHm; omega.
Qed.

Lemma firstn_succ : forall {A} (d : A) n l, (n < length l)%nat ->
  firstn (S n) l = (firstn n l) ++ nth_default d l n :: nil.
Proof.
  induction n; destruct l; rewrite ?(@nil_length0 A); intros; try omega.
  + rewrite nth_default_cons; auto.
  + simpl.
    rewrite nth_default_cons_S.
    rewrite <-IHn by (rewrite cons_length in *; omega).
    reflexivity.
Qed.

Lemma firstn_all_strong : forall {A} (xs : list A) n, (length xs <= n)%nat ->
  firstn n xs = xs.
Proof.
  induction xs; intros; try apply firstn_nil.
  destruct n;
    match goal with H : (length (_ :: _)  <= _)%nat |- _ =>
      simpl in H; try omega end.
  simpl.
  f_equal.
  apply IHxs.
  omega.
Qed.

Lemma set_nth_nth_default : forall {A} (d:A) n x l i, (0 <= i < length l)%nat ->
  nth_default d (set_nth n x l) i =
  if (eq_nat_dec i n) then x else nth_default d l i.
Proof.
  induction n; (destruct l; [intros; simpl in *; omega | ]); simpl;
    destruct i; break_if; try omega; intros; try apply nth_default_cons;
    rewrite !nth_default_cons_S, ?IHn; try break_if; omega || reflexivity.
Qed.