aboutsummaryrefslogtreecommitdiff
path: root/src/Util/HProp.v
blob: 89ed166983586b4b5c5db707f104f8f18665f986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
(** * Homotopy Propositions *)
(** A homotopy proposition, or hProp, is a subsingleton type, i.e., a
    type with at most one inhabitant.  The property of being an hProp,
    i.e., being irrelevant when considering propositional equality
    ([eq]) of terms, comes up frequently.  Since it is frequently
    automatically inferrable from the structure of the type, we make a
    typeclass for it. *)
Class IsHProp T := allpath_hprop : forall x y : T, x = y.

Notation IsHPropRel R := (forall x y, IsHProp (R x y)).

Ltac hprop_destruct_trivial_step :=
  match goal with
  | [ H : unit |- _ ] => destruct H
  | [ H : True |- _ ] => destruct H
  | [ H : False |- _ ] => destruct H
  | [ H : Empty_set |- _ ] => destruct H
  | [ H : prod _ _ |- _ ] => destruct H
  | [ H : and _ _ |- _ ] => destruct H
  | [ H : sigT _ |- _ ] => destruct H
  | [ H : sig _ |- _ ] => destruct H
  | [ H : ex _ |- _ ] => destruct H
  | [ H : forall x y : ?A, x = y, x0 : ?A, x1 : ?A |- _ ]
    => destruct (H x0 x1)
  | [ H : forall a0 (x y : _), x = y, x0 : ?A, x1 : ?A |- _ ]
    => destruct (H _ x0 x1)
  end.
Ltac hprop_destruct_trivial := repeat hprop_destruct_trivial_step.

Ltac pre_hprop :=
  repeat (intros
          || subst
          || hprop_destruct_trivial
          || split
          || unfold IsHProp in *
          || hnf ).

Ltac solve_hprop_transparent_with tac :=
  pre_hprop;
  try solve [ reflexivity
            | decide equality; eauto with nocore
            | tac ].

Ltac solve_hprop_transparent := solve_hprop_transparent_with fail.

Local Hint Extern 0 => solve [ solve_hprop_transparent ] : typeclass_instances.

Global Instance ishprop_unit : IsHProp unit. exact _. Defined.
Global Instance ishprop_True : IsHProp True. exact _. Defined.
Global Instance ishprop_Empty_set : IsHProp Empty_set. exact _. Defined.
Global Instance ishprop_False : IsHProp False. exact _. Defined.
Global Instance ishprop_prod {A B} `{IsHProp A, IsHProp B} : IsHProp (A * B). exact _. Defined.
Global Instance ishprop_and {A B : Prop} `{IsHProp A, IsHProp B} : IsHProp (A /\ B). exact _. Defined.
Global Instance ishprop_sigT {A P} `{IsHProp A, forall a : A, IsHProp (P a)} : IsHProp (@sigT A P). exact _. Defined.
Global Instance ishprop_sig {A} {P : A -> Prop} `{IsHProp A, forall a : A, IsHProp (P a)} : IsHProp (@sig A P). exact _. Defined.


(** Tactics to eliminate proofs of type [x = x :> T] when [T] is an hProp. *)
Ltac eliminate_hprop_eq_helper proof_of_eq hprop_hyp :=
  assert (eq_refl = proof_of_eq) by apply hprop_hyp;
  subst proof_of_eq.
Ltac eliminate_hprop_eq_at T :=
  let hprop_hyp := constr:(_ : IsHPropRel (@eq T)) in
  repeat match goal with
         | [ H : ?x = ?x :> T |- _ ] => eliminate_hprop_eq_helper H hprop_hyp
         end.
Ltac eliminate_hprop_eq :=
  repeat match goal with
         | [ H : ?x = ?x :> ?T |- _ ] => clear H || (progress eliminate_hprop_eq_at T)
         end.