aboutsummaryrefslogtreecommitdiff
path: root/src/UnderLetsProofs.v
blob: ccb872a44ea69e9299bb6e1886290c20ad248aaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Lists.SetoidList.
Require Import Crypto.Language.
Require Import Crypto.LanguageInversion.
Require Import Crypto.LanguageWf.
Require Import Crypto.UnderLets.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.ListUtil.Forall.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SplitInContext.
Import Coq.Lists.List ListNotations. Local Open Scope list_scope.

Import EqNotations.
Module Compilers.
  Import Language.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLets.Compilers.
  Import ident.Notations.
  Import expr.Notations.
  Import invert_expr.

  Module SubstVarLike.
    Section with_ident.
      Context {base_type : Type}.
      Local Notation type := (type.type base_type).
      Context {ident : type -> Type}.
      Local Notation expr := (@expr.expr base_type ident).
      Section with_var.
        Context {var1 var2 : type -> Type}.
        Local Notation expr1 := (@expr.expr base_type ident var1).
        Local Notation expr2 := (@expr.expr base_type ident var2).
        Section with_var_like.
          Context (is_var_like1 : forall t, @expr var1 t -> bool)
                  (is_var_like2 : forall t, @expr var2 t -> bool).
          Local Notation subst_var_like1 := (@SubstVarLike.subst_var_like base_type ident var1 is_var_like1).
          Local Notation subst_var_like2 := (@SubstVarLike.subst_var_like base_type ident var2 is_var_like2).
          Definition is_var_like_wfT := forall G t e1 e2, expr.wf G (t:=t) e1 e2 -> is_var_like1 t e1 = is_var_like2 t e2.
          Context (is_var_like_good : is_var_like_wfT).

          Lemma wf_subst_var_like G1 G2 t e1 e2
                (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> expr.wf G2 v1 v2)
            : expr.wf G1 (t:=t) e1 e2 -> expr.wf G2 (subst_var_like1 e1) (subst_var_like2 e2).
          Proof.
            cbv [is_var_like_wfT] in *.
            intro Hwf; revert dependent G2; induction Hwf;
              cbn [SubstVarLike.subst_var_like];
              repeat first [ match goal with
                             | [ H : is_var_like1 _ ?x = _, H' : is_var_like2 _ ?y = _ |- _ ]
                               => assert (is_var_like1 _ x = is_var_like2 _ y) by eauto; congruence
                             end
                           | progress wf_safe_t
                           | progress break_innermost_match
                           | solve [ wf_t ] ].
          Qed.
        End with_var_like.

        Section with_ident_like.
          Context (ident_is_good : forall t, ident t -> bool).

          Lemma wfT_is_recursively_var_or_ident
            : is_var_like_wfT (fun t => SubstVarLike.is_recursively_var_or_ident ident_is_good)
                              (fun t => SubstVarLike.is_recursively_var_or_ident ident_is_good).
          Proof.
            intros G t e1 e2 Hwf; induction Hwf; cbn [SubstVarLike.is_recursively_var_or_ident];
              congruence.
          Qed.
        End with_ident_like.

        Lemma wfT_is_var
          : is_var_like_wfT (fun _ e => match invert_Var e with Some _ => true | None => false end)
                            (fun _ e => match invert_Var e with Some _ => true | None => false end).
        Proof. intros G t e1 e2 Hwf; destruct Hwf; cbn [invert_Var]; reflexivity. Qed.
      End with_var.

      Local Notation SubstVarLike := (@SubstVarLike.SubstVarLike base_type ident).
      Local Notation SubstVar := (@SubstVarLike.SubstVar base_type ident).
      Local Notation SubstVarOrIdent := (@SubstVarLike.SubstVarOrIdent base_type ident).

      Lemma Wf_SubstVarLike (is_var_like : forall var t, @expr var t -> bool)
            (is_var_like_good : forall var1 var2, is_var_like_wfT (is_var_like var1) (is_var_like var2))
            {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVarLike is_var_like e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto with nocore; cbn [In]; tauto.
      Qed.

      Lemma Wf_SubstVar {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVar e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto using wfT_is_var with nocore; cbn [In]; tauto.
      Qed.

      Lemma Wf_SubstVarOrIdent (should_subst_ident : forall t, ident t -> bool)
            {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVarOrIdent should_subst_ident e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto using wfT_is_recursively_var_or_ident with nocore; cbn [In]; tauto.
      Qed.

      Section interp.
        Context {base_interp : base_type -> Type}
                {interp_ident : forall t, ident t -> type.interp base_interp t}
                {interp_ident_Proper : forall t, Proper (eq ==> type.eqv) (interp_ident t)}.
        Section with_is_var_like.
          Context (is_var_like : forall t, @expr (type.interp base_interp) t -> bool).

          Lemma interp_subst_var_like_gen G t (e1 e2 : expr t)
                (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> expr.interp interp_ident v1 == v2)
                (Hwf : expr.wf G e1 e2)
            : expr.interp interp_ident (SubstVarLike.subst_var_like is_var_like e1) == expr.interp interp_ident e2.
          Proof.
            induction Hwf; cbn [SubstVarLike.subst_var_like]; cbv [Proper respectful] in *;
              interp_safe_t; break_innermost_match; interp_safe_t.
          Qed.

          Lemma interp_subst_var_like_gen_nil t (e1 e2 : expr t)
                (Hwf : expr.wf nil e1 e2)
            : expr.interp interp_ident (SubstVarLike.subst_var_like is_var_like e1) == expr.interp interp_ident e2.
          Proof. apply interp_subst_var_like_gen with (G:=nil); cbn [In]; eauto with nocore; tauto. Qed.
        End with_is_var_like.

        Lemma Interp_SubstVarLike (is_var_like : forall var t, @expr var t -> bool)
              {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVarLike is_var_like e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.

        Lemma Interp_SubstVar {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVar e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.

        Lemma Interp_SubstVarOrIdent (should_subst_ident : forall t, ident t -> bool)
              {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVarOrIdent should_subst_ident e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.
      End interp.
    End with_ident.

    Lemma Wf_SubstVarFstSndPairOppCast {t} (e : expr.Expr t)
      : expr.Wf e -> expr.Wf (SubstVarLike.SubstVarFstSndPairOppCast e).
    Proof. apply Wf_SubstVarOrIdent. Qed.

    Section with_cast.
      Context {cast_outside_of_range : ZRange.zrange -> BinInt.Z -> BinInt.Z}.
      Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).
      Local Notation interp := (@expr.interp _ _ _ (@ident_interp)).
      Local Notation Interp := (@expr.Interp _ _ _ (@ident_interp)).

      Lemma Interp_SubstVarFstSndPairOppCast {t} (e : expr.Expr t) (Hwf : expr.Wf e)
        : Interp (SubstVarLike.SubstVarFstSndPairOppCast e) == Interp e.
      Proof. apply Interp_SubstVarOrIdent, Hwf. Qed.
    End with_cast.
  End SubstVarLike.

  Hint Resolve SubstVarLike.Wf_SubstVar SubstVarLike.Wf_SubstVarFstSndPairOppCast SubstVarLike.Wf_SubstVarLike SubstVarLike.Wf_SubstVarOrIdent : wf.
  Hint Rewrite @SubstVarLike.Interp_SubstVar @SubstVarLike.Interp_SubstVarFstSndPairOppCast @SubstVarLike.Interp_SubstVarLike @SubstVarLike.Interp_SubstVarOrIdent : interp.

  Module UnderLets.
    Import UnderLets.Compilers.UnderLets.
    Section with_ident.
      Context {base_type : Type}.
      Local Notation type := (type.type base_type).
      Context {ident : type -> Type}.
      Local Notation expr := (@expr.expr base_type ident).
      Local Notation UnderLets := (@UnderLets base_type ident).

      Section with_var.
        Context {var1 var2 : type -> Type}.

        Inductive wf {T1 T2} {P : list { t : type & var1 t * var2 t }%type -> T1 -> T2 -> Prop}
          : list { t : type & var1 t * var2 t }%type -> @UnderLets var1 T1 -> @UnderLets var2 T2 -> Prop :=
        | Wf_Base G e1 e2 : P G e1 e2 -> wf G (Base e1) (Base e2)
        | Wf_UnderLet G A x1 x2 f1 f2
          : expr.wf G x1 x2
            -> (forall v1 v2, wf (existT _ A (v1, v2) :: G) (f1 v1) (f2 v2))
            -> wf G (UnderLet x1 f1) (UnderLet x2 f2).
        Global Arguments wf {T1 T2} P _ _ _.

        Lemma wf_Proper_list_impl {T1 T2}
              (P1 P2 : list { t : type & var1 t * var2 t }%type -> T1 -> T2 -> Prop)
              G1 G2
              (HP : forall seg v1 v2, P1 (seg ++ G1) v1 v2 -> P2 (seg ++ G2) v1 v2)
              (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
              e1 e2
              (Hwf : @wf T1 T2 P1 G1 e1 e2)
          : @wf T1 T2 P2 G2 e1 e2.
        Proof.
          revert dependent G2; induction Hwf; constructor;
            repeat first [ progress cbn in *
                         | progress intros
                         | solve [ eauto ]
                         | progress subst
                         | progress destruct_head'_or
                         | progress inversion_sigma
                         | progress inversion_prod
                         | match goal with H : _ |- _ => apply H; clear H end
                         | wf_unsafe_t_step
                         | eapply (HP nil)
                         | rewrite ListUtil.app_cons_app_app in * ].
        Qed.

        Lemma wf_Proper_list {T1 T2}
              {P : list { t : type & var1 t * var2 t }%type -> T1 -> T2 -> Prop}
              (HP : forall G1 G2,
                  (forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                  -> forall v1 v2, P G1 v1 v2 -> P G2 v1 v2)
              G1 G2
              (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
              e1 e2
              (Hwf : @wf T1 T2 P G1 e1 e2)
          : @wf T1 T2 P G2 e1 e2.
        Proof.
          eapply wf_Proper_list_impl; [ intros | | eassumption ]; eauto.
          eapply HP; [ | eassumption ]; intros *.
          rewrite !in_app_iff; intuition eauto.
        Qed.

        Lemma wf_to_expr {t} (x : @UnderLets var1 (@expr var1 t)) (y : @UnderLets var2 (@expr var2 t))
              G
          : wf (fun G => expr.wf G) G x y -> expr.wf G (to_expr x) (to_expr y).
        Proof.
          intro Hwf; induction Hwf; cbn [to_expr]; [ assumption | constructor; auto ].
        Qed.

        Lemma wf_of_expr {t} (x : @expr var1 t) (y : @expr var2 t)
              G
          : expr.wf G x y -> wf (fun G => expr.wf G) G (of_expr x) (of_expr y).
        Proof.
          intro Hwf; induction Hwf; cbn [of_expr]; repeat constructor; auto.
        Qed.

        Lemma wf_splice {A1 B1 A2 B2}
              {P : list { t : type & var1 t * var2 t }%type -> A1 -> A2 -> Prop}
              {Q : list { t : type & var1 t * var2 t }%type -> B1 -> B2 -> Prop}
              G
              (x1 : @UnderLets var1 A1) (x2 : @UnderLets var2 A2) (Hx : @wf _ _ P G x1 x2)
              (e1 : A1 -> @UnderLets var1 B1) (e2 : A2 -> @UnderLets var2 B2)
              (He : forall G' a1 a2, (exists seg, G' = seg ++ G) -> P G' a1 a2 -> @wf _ _ Q G' (e1 a1) (e2 a2))
          : @wf _ _ Q G (splice x1 e1) (splice x2 e2).
        Proof.
          induction Hx; cbn [splice]; [ | constructor ];
            eauto using (ex_intro _ nil); intros.
          match goal with H : _ |- _ => eapply H end;
            intros; destruct_head'_ex; subst.
          rewrite ListUtil.app_cons_app_app in *.
          eauto using (ex_intro _ nil).
        Qed.

        Lemma wf_splice_list {A1 B1 A2 B2}
              {P_parts : nat -> list { t : type & var1 t * var2 t }%type -> A1 -> A2 -> Prop}
              {P : list { t : type & var1 t * var2 t }%type -> list A1 -> list A2 -> Prop}
              {Q : list { t : type & var1 t * var2 t }%type -> B1 -> B2 -> Prop}
              G
              (x1 : list (@UnderLets var1 A1)) (x2 : list (@UnderLets var2 A2))
              (P_parts_Proper_list : forall n G1 G2 a1 a2,
                  (forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                  -> P_parts n G1 a1 a2 -> P_parts n G2 a1 a2)
              (HP : forall G' l1 l2,
                  (exists seg, G' = seg ++ G) -> length l1 = length x1 -> length l2 = length x2
                  -> (forall n v1 v2, nth_error l1 n = Some v1 -> nth_error l2 n = Some v2 -> P_parts n G' v1 v2)
                  -> P G' l1 l2)
              (Hx_len : length x1 = length x2)
              (Hx : forall n v1 v2, nth_error x1 n = Some v1 -> nth_error x2 n = Some v2 ->@wf _ _ (P_parts n) G v1 v2)
              (e1 : list A1 -> @UnderLets var1 B1) (e2 : list A2 -> @UnderLets var2 B2)
              (He : forall G' a1 a2, (exists seg, G' = seg ++ G) -> P G' a1 a2 -> @wf _ _ Q G' (e1 a1) (e2 a2))
          : @wf _ _ Q G (splice_list x1 e1) (splice_list x2 e2).
        Proof.
          revert dependent P; revert dependent P_parts; revert dependent G; revert dependent e1; revert dependent e2; revert dependent x2;
            induction x1 as [|x1 xs1 IHx1], x2 as [|x2 xs2];
            cbn [splice_list length nth_error]; intros; try congruence.
          { eapply He; [ exists nil; reflexivity | eapply HP; eauto using (ex_intro _ nil) ].
            intros []; cbn [nth_error]; intros; congruence. }
          { inversion Hx_len; clear Hx_len.
            pose proof (fun n => Hx (S n)) as Hxs.
            specialize (Hx O).
            cbn [nth_error] in *.
            eapply wf_splice; [ eapply Hx; reflexivity | wf_safe_t ].
            destruct_head'_ex; subst.
            lazymatch goal with
            | [ |- wf _ _ (splice_list _ (fun _ => ?e1 (?a1 :: _))) (splice_list _ (fun _ => ?e2 (?a2 :: _))) ]
              => eapply IHx1 with (P_parts:=fun n => P_parts (S n)) (P:=fun G' l1 l2 => P G' (a1::l1) (a2::l2))
            end; wf_safe_t; destruct_head'_ex; wf_safe_t.
            { eapply wf_Proper_list; [ | | eapply Hxs ]; wf_t. }
            { eapply HP; cbn [length]; rewrite ?app_assoc; eauto; [].
              intros []; cbn [nth_error]; wf_safe_t; inversion_option; wf_safe_t.
              { eapply P_parts_Proper_list; [ | eauto ]; wf_t. }
              { eapply P_parts_Proper_list; [ | eauto ]; wf_t. } }
            { eapply He; eauto; rewrite ?app_assoc; eauto. } }
        Qed.

        Lemma wf_splice_list_no_order_nth_error {A1 B1 A2 B2}
              {P : list { t : type & var1 t * var2 t }%type -> A1 -> A2 -> Prop}
              {Q : list { t : type & var1 t * var2 t }%type -> B1 -> B2 -> Prop}
              G
              (x1 : list (@UnderLets var1 A1)) (x2 : list (@UnderLets var2 A2))
              (P_Proper_list : forall G1 G2 a1 a2,
                  (forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                  -> P G1 a1 a2 -> P G2 a1 a2)
              (Hx_len : length x1 = length x2)
              (Hx : forall n v1 v2, nth_error x1 n = Some v1 -> nth_error x2 n = Some v2 ->@wf _ _ P G v1 v2)
              (e1 : list A1 -> @UnderLets var1 B1) (e2 : list A2 -> @UnderLets var2 B2)
              (He : forall G' a1 a2, (exists seg, G' = seg ++ G)
                                     -> length a1 = length x1
                                     -> length a2 = length x2
                                     -> (forall v1 v2, List.In (v1, v2) (combine a1 a2) -> P G' v1 v2)
                                     -> @wf _ _ Q G' (e1 a1) (e2 a2))
          : @wf _ _ Q G (splice_list x1 e1) (splice_list x2 e2).
        Proof.
          apply @wf_splice_list
            with (P_parts := fun _ => P)
                 (P:=fun G' l1 l2 => length l1 = length x1 /\ length l2 = length x2
                                     /\ forall v1 v2, List.In (v1, v2) (combine l1 l2) -> P G' v1 v2);
            repeat first [ progress wf_safe_t
                         | apply conj
                         | progress inversion_option
                         | progress destruct_head'_ex
                         | progress break_innermost_match_hyps
                         | match goal with
                           | [ H : In _ (combine _ _) |- _ ] => apply ListUtil.In_nth_error_value in H
                           | [ H : context[nth_error (combine _ _) _] |- _ ]
                             => rewrite ListUtil.nth_error_combine in H
                           end ].
        Qed.

        Lemma wf_splice_list_no_order {A1 B1 A2 B2}
              {P : list { t : type & var1 t * var2 t }%type -> A1 -> A2 -> Prop}
              {Q : list { t : type & var1 t * var2 t }%type -> B1 -> B2 -> Prop}
              G
              (x1 : list (@UnderLets var1 A1)) (x2 : list (@UnderLets var2 A2))
              (P_Proper_list : forall G1 G2 a1 a2,
                  (forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                  -> P G1 a1 a2 -> P G2 a1 a2)
              (Hx : List.Forall2 (wf P G) x1 x2)
              (e1 : list A1 -> @UnderLets var1 B1) (e2 : list A2 -> @UnderLets var2 B2)
              (He : forall G' a1 a2, (exists seg, G' = seg ++ G)
                                     -> length a1 = length x1
                                     -> length a2 = length x2
                                     -> List.Forall2 (P G') a1 a2
                                     -> @wf _ _ Q G' (e1 a1) (e2 a2))
          : @wf _ _ Q G (splice_list x1 e1) (splice_list x2 e2).
        Proof.
          setoid_rewrite Forall2_forall_In_combine_iff in He.
          apply @wf_splice_list_no_order_nth_error with (P:=P); try assumption;
            eauto using eq_length_Forall2.
          { intro n; rewrite Forall2_forall_iff_nth_error in Hx; specialize (Hx n).
            intros; cbv [option_eq] in *; break_innermost_match_hyps; inversion_option; subst; assumption. }
          { rewrite Forall2_forall_In_combine_iff in Hx; destruct Hx.
            intros; eapply He; try apply conj; eauto; congruence. }
        Qed.

        Lemma wf_list_rect {A B Pnil Pcons ls A' B' Pnil' Pcons' ls'} {RA : A -> A' -> Prop} {RB G}
              (Hnil : wf RB G Pnil Pnil')
              (Hcons : forall x x',
                  RA x x'
                  -> forall l l',
                    List.Forall2 RA l l'
                    -> forall rec rec',
                      wf RB G rec rec'
                      -> wf RB G (Pcons x l rec) (Pcons' x' l' rec'))
              (Hls : List.Forall2 RA ls ls')
          : wf RB G
               (list_rect
                  (fun _ : list _ => @UnderLets var1 B)
                  Pnil
                  Pcons
                  ls)
               (list_rect
                  (fun _ : list _ => @UnderLets var2 B')
                  Pnil'
                  Pcons'
                  ls').
        Proof using Type. induction Hls; cbn [list_rect] in *; auto. Qed.

        Lemma wf_list_rect_arrow {T A B PN PC l v T' A' B' PN' PC' l' v' R}
              {RT : T -> T' -> Prop}
              {R' : _ -> A -> A' -> Prop} {G seg G'}
              (Hnil : forall seg G' x x',
                  G' = seg ++ G
                  -> R' seg x x'
                  -> wf R G' (PN x) (PN' x'))
              (Hcons : forall seg G' x x' xs xs' rec rec',
                  G' = seg ++ G
                  -> RT x x'
                  -> List.Forall2 RT xs xs'
                  -> (forall seg' G'' v v',
                         G'' = seg' ++ G'
                         -> R' seg' v v'
                         -> wf R G'' (rec v) (rec' v'))
                  -> forall v v',
                      R' seg v v'
                      -> wf R G' (PC x xs rec v) (PC' x' xs' rec' v'))
              (HR : forall G1 G2,
                  (forall t v1 v2, In (existT _ t (v1, v2)) G1 -> In (existT _ t (v1, v2)) G2)
                  -> forall v1 v2, R G1 v1 v2 -> R G2 v1 v2)
              (Hl : List.Forall2 RT l l')
              (HG : G' = seg ++ G)
              (Hx : R' seg v v')
          : wf
              R G'
              (list_rect (fun _ : list T => A -> @UnderLets var1 B) PN PC l v)
              (list_rect (fun _ : list T' => A' -> @UnderLets var2 B') PN' PC' l' v').
        Proof using Type.
          revert seg G' HG v v' Hx.
          induction Hl as [|x x' xs xs' Hx Hxs IHxs]; cbn [list_rect] in *; eauto.
          intros; subst; eapply Hcons; try eassumption; eauto.
          intros; subst; eapply wf_Proper_list; revgoals; try assumption.
          { eapply IHxs; try eassumption; reflexivity. }
          { wf_t. }
        Qed.

        Lemma wf_nat_rect {A PO PS n A' PO' PS' n' R G}
              (Hnil : wf R G PO PO')
              (Hcons : forall n rec rec',
                  wf R G rec rec'
                  -> wf R G (PS n rec) (PS' n rec'))
              (Hn : n = n')
          : wf R G
               (nat_rect (fun _ => @UnderLets var1 A) PO PS n)
               (nat_rect (fun _ => @UnderLets var2 A') PO' PS' n').
        Proof using Type. subst n'; induction n; cbn [nat_rect] in *; auto. Qed.

        Lemma wf_nat_rect_arrow {A B PO PS n x A' B' PO' PS' n' x' R}
              {R' : _ -> A -> A' -> Prop} {G seg G'}
              (Hnil : forall seg G' x x',
                  G' = seg ++ G
                  -> R' seg x x'
                  -> wf R G' (PO x) (PO' x'))
              (Hcons : forall seg G' n rec rec',
                  G' = seg ++ G
                  -> (forall seg' G'' x x',
                         G'' = seg' ++ G'
                         -> R' seg' x x'
                         -> wf R G'' (rec x) (rec' x'))
                  -> forall x x',
                      R' seg x x'
                      -> wf R G' (PS n rec x) (PS' n rec' x'))
              (HR : forall G1 G2,
                  (forall t v1 v2, In (existT _ t (v1, v2)) G1 -> In (existT _ t (v1, v2)) G2)
                  -> forall v1 v2, R G1 v1 v2 -> R G2 v1 v2)
              (Hn : n = n')
              (HG : G' = seg ++ G)
              (Hx : R' seg x x')
          : wf R G'
               (nat_rect (fun _ => A -> @UnderLets var1 B) PO PS n x)
               (nat_rect (fun _ => A' -> @UnderLets var2 B') PO' PS' n' x').
        Proof using Type.
          subst n'; revert seg G' HG x x' Hx.
          induction n as [|n IHn]; cbn [nat_rect] in *; eauto.
          intros; subst; eapply Hcons; try eassumption; eauto.
          intros; subst; eapply wf_Proper_list; revgoals; try assumption.
          { eapply IHn; try eassumption; reflexivity. }
          { wf_t. }
        Qed.
      End with_var.

      Section with_var2.
        Context {var1 var2 var1' var2' : type -> Type}.

        Lemma wf_flat_map {T1 T2 e1 e2 f1 f2 f'1 f'2 G G'}
              (R : forall t, list _ -> var1' t -> var2' t -> Prop)
              (P : list _ -> T1 -> T2 -> Prop)
              (HR : forall G1 G2,
                  (forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                  -> forall t e1 e2, R t G1 e1 e2 -> R t G2 e1 e2)
              (Hwf : wf P G' e1 e2)
              (Hf : forall G G',
                  (forall t v1 v2,
                      In (existT _ t (v1, v2)) G' -> R t G v1 v2)
                  -> forall t e1 e2,
                    expr.wf G' e1 e2
                    -> wf (fun G' => expr.wf G') G (f1 t e1) (f2 t e2))
              (Hf' : forall t' G' (v1 : var1 t') (v2 : var2 t'),
                  R t' (existT _ t' (v1, v2) :: G') (f'1 t' v1) (f'2 t' v2))
              (HG : forall t' v1' v2',
                  In (existT _ t' (v1', v2')) G'
                  -> R t' G v1' v2')
          : wf
              (fun G e1 e2
               => exists G',
                   (forall t v1 v2, List.In (existT _ t (v1, v2)) G' -> R t G v1 v2)
                   /\ P G' e1 e2)
              G
              (@UnderLets.flat_map _ ident var1' ident var1 f1 f'1 T1 e1)
              (@UnderLets.flat_map _ ident var2' ident var2 f2 f'2 T2 e2).
        Proof using Type.
          revert dependent G; induction Hwf; cbn [UnderLets.flat_map]; intros.
          { constructor; hnf; eauto. }
          { eapply @wf_splice; [ eapply Hf; eassumption | ].
            intros; constructor; auto; intros.
            match goal with H : _ |- _ => eapply H end.
            cbn [List.In]; intros; destruct_head'_or; inversion_sigma; inversion_prod; subst; cbn [eq_rect fst snd] in *.
            { apply Hf'. }
            { destruct_head'_ex; subst.
              eapply HR; revgoals; [ eapply HG | ]; wf_t. } }
        Qed.
      End with_var2.

      Section for_interp2.
        Context {base_interp : base_type -> Type}
                (ident_interp : forall t, ident t -> type.interp base_interp t)
                {var : type -> Type}.

        Fixpoint interp_related_gen {T1 T2} (R' : forall t, var t -> type.interp base_interp t -> Prop) (R : T1 -> T2 -> Prop) (e : @UnderLets var T1) (v2 : T2) : Prop
          := match e with
             | Base v1 => R v1 v2
             | UnderLet t e f (* combine the App rule with the Abs rule *)
               => exists fv ev,
                  expr.interp_related_gen ident_interp R' e ev
                  /\ (forall x1 x2,
                         R' _ x1 x2
                         -> @interp_related_gen T1 T2 R' R (f x1) (fv x2))
                  /\ fv ev = v2
             end.

        Lemma to_expr_interp_related_gen_iff (R : forall t, var t -> type.interp base_interp t -> Prop) {t e v}
          : interp_related_gen R (expr.interp_related_gen ident_interp R (t:=t)) e v
            <-> expr.interp_related_gen ident_interp R (UnderLets.to_expr e) v.
        Proof using Type.
          revert v; induction e; cbn [UnderLets.to_expr interp_related_gen expr.interp_related_gen]; try reflexivity.
          setoid_rewrite H.
          reflexivity.
        Qed.

        Global Instance interp_related_gen_Proper_iff {T1 T2 R}
          : Proper (pointwise_relation _ (pointwise_relation _ iff) ==> eq ==> eq ==> iff) (@interp_related_gen T1 T2 R) | 10.
        Proof using Type.
          cbv [pointwise_relation respectful Proper].
          intros R1 R2 HR x y ? x' y' H'; subst y y'.
          revert x'; induction x; [ apply HR | ]; cbn [interp_related_gen].
          setoid_rewrite H; reflexivity.
        Qed.

        Lemma splice_interp_related_gen_iff {A B T R' R x e} {v : T}
          : interp_related_gen R' R (@UnderLets.splice _ ident _ A B x e) v
            <-> interp_related_gen
                  R'
                  (fun xv => interp_related_gen R' R (e xv))
                  x v.
        Proof using Type.
          revert v; induction x; cbn [UnderLets.splice interp_related_gen]; [ reflexivity | ].
          match goal with H : _ |- _ => setoid_rewrite H end.
          reflexivity.
        Qed.

        Lemma splice_list_interp_related_gen_iff_gen {A B T R' R x e1 e2 base} {v : T}
              (He1e2 : forall ls', e1 ls' = e2 (base ++ ls'))
          : interp_related_gen R' R (@UnderLets.splice_list _ ident _ A B x e1) v
            <-> list_rect
                  (fun _ => list _ -> _ -> Prop)
                  (fun ls v => interp_related_gen R' R (e2 ls) v)
                  (fun x xs recP ls v
                   => interp_related_gen
                        R'
                        (fun x' v => recP (ls ++ [x']) v)
                        x
                        v)
                  x
                  base
                  v.
        Proof using Type.
          revert base v e1 e2 He1e2; induction x as [|? ? IHx]; cbn [UnderLets.splice_list interp_related_gen list_rect]; intros.
          { intros; rewrite He1e2, ?app_nil_r; reflexivity. }
          { setoid_rewrite splice_interp_related_gen_iff.
            apply interp_related_gen_Proper_iff; [ | reflexivity.. ]; cbv [pointwise_relation]; intros.
            specialize (fun v => IHx (base ++ [v])).
            setoid_rewrite IHx; [ reflexivity | ].
            intros; rewrite He1e2, <- ?app_assoc; reflexivity. }
        Qed.

        Lemma splice_list_interp_related_gen_iff {A B T R' R x e} {v : T}
          : interp_related_gen R' R (@UnderLets.splice_list _ ident _ A B x e) v
            <-> list_rect
                  (fun _ => list _ -> _ -> Prop)
                  (fun ls v => interp_related_gen R' R (e ls) v)
                  (fun x xs recP ls v
                   => interp_related_gen
                        R'
                        (fun x' v => recP (ls ++ [x']) v)
                        x
                        v)
                  x
                  nil
                  v.
        Proof using Type.
          apply splice_list_interp_related_gen_iff_gen; reflexivity.
        Qed.

        Lemma splice_interp_related_gen_of_ex {A B T T' R' RA RB x e} {v : T}
          : (exists ev (xv : T'),
                interp_related_gen R' RA x xv
                /\ (forall x1 x2,
                       RA x1 x2
                       -> interp_related_gen R' RB (e x1) (ev x2))
                /\ ev xv = v)
            -> interp_related_gen R' RB (@UnderLets.splice _ ident _ A B x e) v.
        Proof using Type.
          revert e v; induction x; cbn [interp_related_gen UnderLets.splice]; intros.
          all: repeat first [ progress destruct_head'_ex
                            | progress destruct_head'_and
                            | progress subst
                            | reflexivity
                            | match goal with
                              | [ H : _ |- _ ] => apply H; clear H
                              end ].
          do 2 eexists; repeat apply conj; [ eassumption | | ]; intros.
          { match goal with H : _ |- _ => apply H; clear H end.
            do 2 eexists; repeat apply conj; try now eauto. }
          { reflexivity. }
        Qed.

        Lemma splice_list_interp_related_gen_of_ex {A B T T' R' RA RB x e} {v : T}
          : (exists ev (xv : list T'),
                    List.Forall2 (interp_related_gen R' RA) x xv
                    /\ (forall x1 x2,
                           List.length x2 = List.length xv
                           -> List.Forall2 RA x1 x2
                           -> interp_related_gen R' RB (e x1) (ev x2))
                    /\ ev xv = v)
            -> interp_related_gen R' RB (@UnderLets.splice_list _ ident _ A B x e) v.
        Proof using Type.
          revert e v; induction x as [|x xs IHxs]; cbn [interp_related_gen UnderLets.splice_list]; intros.
          all: repeat first [ progress destruct_head'_ex
                            | progress destruct_head'_and
                            | progress cbn [List.length] in *
                            | progress subst
                            | reflexivity
                            | match goal with
                              | [ H : List.Forall2 _ nil ?x |- _ ] => is_var x; inversion H; clear H
                              | [ H : List.Forall2 _ (cons _ _) ?x |- _ ] => is_var x; inversion H; clear H
                              | [ |- List.Forall2 _ _ _ ] => constructor
                              | [ H : _ |- _ ] => apply H; clear H
                              end ].
          lazymatch goal with
          | [ H : forall l1 l2, length l2 = S (length _) -> Forall2 _ l1 l2 -> _ |- _ ]
            => specialize (fun l ls l' ls' (pf0 : length _ = _) pf1 pf2 => H (cons l ls) (cons l' ls') (f_equal S pf0) (Forall2_cons _ _ pf1 pf2))
          end.
          eapply splice_interp_related_gen_of_ex; do 2 eexists; repeat apply conj;
            intros; [ eassumption | | ].
          { eapply IHxs.
            do 2 eexists; repeat apply conj; intros;
              [ eassumption | | ].
            { match goal with H : _ |- _ => eapply H; clear H end; eassumption. }
            { reflexivity. } }
          { reflexivity. }
        Qed.

        Lemma list_rect_interp_related_gen {A B Pnil Pcons ls B' Pnil' Pcons' ls' R' R}
              (Hnil : interp_related_gen R' R Pnil Pnil')
              (Hcons : forall x x',
                  expr.interp_related_gen ident_interp R' x x'
                  -> forall l l',
                    List.Forall2 (expr.interp_related_gen ident_interp R') l l'
                    -> forall rec rec',
                      interp_related_gen R' R rec rec'
                      -> interp_related_gen R' R (Pcons x l rec) (Pcons' x' l' rec'))
              (Hls : List.Forall2 (expr.interp_related_gen ident_interp R' (t:=A)) ls ls')
          : interp_related_gen
              R' R
              (list_rect
                 (fun _ : list _ => UnderLets _ B)
                 Pnil
                 Pcons
                 ls)
              (list_rect
                 (fun _ : list _ => B')
                 Pnil'
                 Pcons'
                 ls').
        Proof using Type. induction Hls; cbn [list_rect] in *; auto. Qed.

        Lemma list_rect_arrow_interp_related_gen {A B C Pnil Pcons ls x B' C' Pnil' Pcons' ls' x' R'' R}
              {R' : B -> B' -> Prop}
              (Hnil : forall x x', R' x x' -> interp_related_gen R'' R (Pnil x) (Pnil' x'))
              (Hcons : forall x x',
                  expr.interp_related_gen ident_interp R'' x x'
                  -> forall l l',
                    List.Forall2 (expr.interp_related_gen ident_interp R'') l l'
                    -> forall rec rec',
                      (forall v v', R' v v' -> interp_related_gen R'' R (rec v) (rec' v'))
                      -> forall v v',
                        R' v v'
                        -> interp_related_gen R'' R (Pcons x l rec v) (Pcons' x' l' rec' v'))
              (Hls : List.Forall2 (expr.interp_related_gen ident_interp R'' (t:=A)) ls ls')
              (Hx : R' x x')
          : interp_related_gen
              R'' R
              (list_rect
                 (fun _ : list _ => B -> UnderLets _ C)
                 Pnil
                 Pcons
                 ls
                 x)
              (list_rect
                 (fun _ : list _ => B' -> C')
                 Pnil'
                 Pcons'
                 ls'
                 x').
        Proof using Type. revert x x' Hx; induction Hls; cbn [list_rect] in *; auto. Qed.

        Lemma nat_rect_interp_related_gen {A PO PS n A' PO' PS' n' R' R}
              (Hnil : interp_related_gen R' R PO PO')
              (Hcons : forall n rec rec',
                  interp_related_gen R' R rec rec'
                  -> interp_related_gen R' R (PS n rec) (PS' n rec'))
              (Hn : n = n')
          : interp_related_gen
              R' R
              (nat_rect (fun _ => UnderLets _ A) PO PS n)
              (nat_rect (fun _ => A') PO' PS' n').
        Proof using Type. subst n'; induction n; cbn [nat_rect] in *; auto. Qed.

        Lemma nat_rect_arrow_interp_related_gen {A B PO PS n x A' B' PO' PS' n' x' R'' R}
              {R' : A -> A' -> Prop}
              (Hnil : forall x x', R' x x' -> interp_related_gen R'' R (PO x) (PO' x'))
              (Hcons : forall n rec rec',
                  (forall x x', R' x x' -> interp_related_gen R'' R (rec x) (rec' x'))
                  -> forall x x',
                    R' x x'
                    -> interp_related_gen R'' R (PS n rec x) (PS' n rec' x'))
              (Hn : n = n')
              (Hx : R' x x')
          : interp_related_gen
              R'' R
              (nat_rect (fun _ => A -> UnderLets _ B) PO PS n x)
              (nat_rect (fun _ => A' -> B') PO' PS' n' x').
        Proof using Type. subst n'; revert x x' Hx; induction n; cbn [nat_rect] in *; auto. Qed.

        Lemma interp_related_gen_Proper_impl_same_UnderLets {A B B' R' R1 R2 e v f}
              (HR : forall e v, (R1 e v : Prop) -> (R2 e (f v) : Prop))
          : @interp_related_gen A B R' R1 e v
            -> @interp_related_gen A B' R' R2 e (f v).
        Proof using Type.
          revert f v HR; induction e; cbn [interp_related_gen]; [ now eauto | ]; intros F v HR H'.
          destruct H' as [fv H']; exists (fun ev => F (fv ev)).
          repeat first [ let x := fresh "x" in destruct H' as [x H']; exists x
                       | let x := fresh "x" in intro x; specialize (H' x)
                       | let H := fresh "H" in destruct H' as [H H']; split; [ exact H || now subst | ]
                       | let H := fresh "H" in destruct H' as [H' H]; split; [ | exact H || now subst ] ].
          auto.
        Qed.
      End for_interp2.

      Section for_interp.
        Context {base_interp : base_type -> Type}
                (ident_interp : forall t, ident t -> type.interp base_interp t).

        Local Notation UnderLets := (@UnderLets (type.interp base_interp)).

        Fixpoint interp {T} (v : UnderLets T) : T
          := match v with
             | Base v => v
             | UnderLet A x f => let xv := expr.interp ident_interp x in
                                 @interp _ (f xv)
             end.

        Definition interp_related {T1 T2} (R : T1 -> T2 -> Prop) (e : UnderLets T1) (v2 : T2) : Prop
          := @interp_related_gen base_interp ident_interp _ T1 T2 (fun t => type.eqv) R e v2.

        Lemma interp_splice {A B} (x : UnderLets A) (e : A -> UnderLets B)
          : interp (splice x e) = interp (e (interp x)).
        Proof. induction x; cbn [splice interp]; eauto. Qed.

        Lemma interp_splice_list {A B} (x : list (UnderLets A)) (e : list A -> UnderLets B)
          : interp (splice_list x e)
            = interp (e (List.map interp x)).
        Proof.
          revert e; induction x as [|x xs IHx]; intros; cbn [splice_list interp List.map]; [ reflexivity | ].
          rewrite interp_splice, IHx; reflexivity.
        Qed.

        Lemma interp_to_expr {t} (x : UnderLets (expr t))
          : expr.interp ident_interp (to_expr x) = expr.interp ident_interp (interp x).
        Proof. induction x; cbn [expr.interp interp to_expr]; cbv [LetIn.Let_In]; eauto. Qed.

        Lemma interp_of_expr {t} (x : expr t)
          : expr.interp ident_interp (interp (of_expr x)) = expr.interp ident_interp x.
        Proof. induction x; cbn [expr.interp interp of_expr]; cbv [LetIn.Let_In]; eauto. Qed.

        Lemma to_expr_interp_related_iff {t e v}
          : interp_related (expr.interp_related ident_interp (t:=t)) e v
            <-> expr.interp_related ident_interp (UnderLets.to_expr e) v.
        Proof using Type. apply to_expr_interp_related_gen_iff. Qed.

        Global Instance interp_related_Proper_iff {T1 T2}
          : Proper (pointwise_relation _ (pointwise_relation _ iff) ==> eq ==> eq ==> iff) (@interp_related T1 T2) | 10.
        Proof using Type. apply interp_related_gen_Proper_iff. Qed.

        Lemma splice_interp_related_iff {A B T R x e} {v : T}
          : interp_related R (@UnderLets.splice _ ident _ A B x e) v
            <-> interp_related
                  (fun xv => interp_related R (e xv))
                  x v.
        Proof using Type. apply splice_interp_related_gen_iff. Qed.

        Lemma splice_list_interp_related_iff_gen {A B T R x e1 e2 base} {v : T}
              (He1e2 : forall ls', e1 ls' = e2 (base ++ ls'))
          : interp_related R (@UnderLets.splice_list _ ident _ A B x e1) v
            <-> list_rect
                  (fun _ => list _ -> _ -> Prop)
                  (fun ls v => interp_related R (e2 ls) v)
                  (fun x xs recP ls v
                   => interp_related
                        (fun x' v => recP (ls ++ [x']) v)
                        x
                        v)
                  x
                  base
                  v.
        Proof using Type. now apply splice_list_interp_related_gen_iff_gen. Qed.

        Lemma splice_list_interp_related_iff {A B T R x e} {v : T}
          : interp_related R (@UnderLets.splice_list _ ident _ A B x e) v
            <-> list_rect
                  (fun _ => list _ -> _ -> Prop)
                  (fun ls v => interp_related R (e ls) v)
                  (fun x xs recP ls v
                   => interp_related
                        (fun x' v => recP (ls ++ [x']) v)
                        x
                        v)
                  x
                  nil
                  v.
        Proof using Type. apply splice_list_interp_related_gen_iff. Qed.

        Lemma splice_interp_related_of_ex {A B T T' RA RB x e} {v : T}
          : (exists ev (xv : T'),
                interp_related RA x xv
                /\ (forall x1 x2,
                       RA x1 x2
                       -> interp_related RB (e x1) (ev x2))
                /\ ev xv = v)
            -> interp_related RB (@UnderLets.splice _ ident _ A B x e) v.
        Proof using Type. apply splice_interp_related_gen_of_ex. Qed.

        Lemma splice_list_interp_related_of_ex {A B T T' RA RB x e} {v : T}
          : (exists ev (xv : list T'),
                    List.Forall2 (interp_related RA) x xv
                    /\ (forall x1 x2,
                           List.length x2 = List.length xv
                           -> List.Forall2 RA x1 x2
                           -> interp_related RB (e x1) (ev x2))
                    /\ ev xv = v)
            -> interp_related RB (@UnderLets.splice_list _ ident _ A B x e) v.
        Proof using Type. apply splice_list_interp_related_gen_of_ex. Qed.

        Lemma list_rect_interp_related {A B Pnil Pcons ls B' Pnil' Pcons' ls' R}
              (Hnil : interp_related R Pnil Pnil')
              (Hcons : forall x x',
                  expr.interp_related ident_interp x x'
                  -> forall l l',
                    List.Forall2 (expr.interp_related ident_interp) l l'
                    -> forall rec rec',
                      interp_related R rec rec'
                      -> interp_related R (Pcons x l rec) (Pcons' x' l' rec'))
              (Hls : List.Forall2 (expr.interp_related ident_interp (t:=A)) ls ls')
          : interp_related
              R
              (list_rect
                 (fun _ : list _ => UnderLets B)
                 Pnil
                 Pcons
                 ls)
              (list_rect
                 (fun _ : list _ => B')
                 Pnil'
                 Pcons'
                 ls').
        Proof using Type. now apply list_rect_interp_related_gen. Qed.

        Lemma list_rect_arrow_interp_related {A B C Pnil Pcons ls x B' C' Pnil' Pcons' ls' x' R}
              {R' : B -> B' -> Prop}
              (Hnil : forall x x', R' x x' -> interp_related R (Pnil x) (Pnil' x'))
              (Hcons : forall x x',
                  expr.interp_related ident_interp x x'
                  -> forall l l',
                    List.Forall2 (expr.interp_related ident_interp) l l'
                    -> forall rec rec',
                      (forall v v', R' v v' -> interp_related R (rec v) (rec' v'))
                      -> forall v v',
                        R' v v'
                        -> interp_related R (Pcons x l rec v) (Pcons' x' l' rec' v'))
              (Hls : List.Forall2 (expr.interp_related ident_interp (t:=A)) ls ls')
              (Hx : R' x x')
          : interp_related
              R
              (list_rect
                 (fun _ : list _ => B -> UnderLets C)
                 Pnil
                 Pcons
                 ls
                 x)
              (list_rect
                 (fun _ : list _ => B' -> C')
                 Pnil'
                 Pcons'
                 ls'
                 x').
        Proof using Type. eapply list_rect_arrow_interp_related_gen; now eauto. Qed.

        Lemma nat_rect_interp_related {A PO PS n A' PO' PS' n' R}
              (Hnil : interp_related R PO PO')
              (Hcons : forall n rec rec',
                  interp_related R rec rec'
                  -> interp_related R (PS n rec) (PS' n rec'))
              (Hn : n = n')
          : interp_related
              R
              (nat_rect (fun _ => UnderLets A) PO PS n)
              (nat_rect (fun _ => A') PO' PS' n').
        Proof using Type. now apply nat_rect_interp_related_gen. Qed.

        Lemma nat_rect_arrow_interp_related {A B PO PS n x A' B' PO' PS' n' x' R}
              {R' : A -> A' -> Prop}
              (Hnil : forall x x', R' x x' -> interp_related R (PO x) (PO' x'))
              (Hcons : forall n rec rec',
                  (forall x x', R' x x' -> interp_related R (rec x) (rec' x'))
                  -> forall x x',
                    R' x x'
                    -> interp_related R (PS n rec x) (PS' n rec' x'))
              (Hn : n = n')
              (Hx : R' x x')
          : interp_related
              R
              (nat_rect (fun _ => A -> UnderLets B) PO PS n x)
              (nat_rect (fun _ => A' -> B') PO' PS' n' x').
        Proof using Type. eapply nat_rect_arrow_interp_related_gen; now eauto. Qed.

        Lemma interp_related_Proper_impl_same_UnderLets {A B B' R1 R2 e v f}
              (HR : forall e v, (R1 e v : Prop) -> (R2 e (f v) : Prop))
          : @interp_related A B R1 e v
            -> @interp_related A B' R2 e (f v).
        Proof using Type. now apply interp_related_gen_Proper_impl_same_UnderLets. Qed.
      End for_interp.

      Section for_interp2.
        Context {base_interp1 base_interp2 : base_type -> Type}
                {ident_interp1 : forall t, ident t -> type.interp base_interp1 t}
                {ident_interp2 : forall t, ident t -> type.interp base_interp2 t}.

        Lemma wf_interp_Proper {T1 T2}
              {P : list { t : type & type.interp base_interp1 t * type.interp base_interp2 t }%type -> T1 -> T2 -> Prop}
              {G v1 v2}
              (Hwf : @wf _ _ T1 T2 P G v1 v2)
          : exists seg, P (seg ++ G) (interp ident_interp1 v1) (interp ident_interp2 v2).
        Proof using Type.
          induction Hwf; [ exists nil; cbn [List.app]; assumption | ].
          let H := match goal with H : forall v1 v2, ex _ |- _ => H end in
          edestruct H as [seg ?]; eexists (seg ++ [_]).
          rewrite <- List.app_assoc; cbn [List.app].
          eassumption.
        Qed.
      End for_interp2.

      Section with_var2_for_interp.
        Context {base_interp : base_type -> Type}
                {ident_interp : forall t, ident t -> type.interp base_interp t}
                {var1 var2 : type -> Type}.

        Lemma flat_map_interp_related_iff
              {T1 T2} f f' R'' R' R e v
              (Hf : forall t e v, expr.interp_related_gen ident_interp R'' e v -> interp_related_gen ident_interp R' (expr.interp_related_gen ident_interp R') (f t e) v)
              (Hf' : forall t e v, R' t e v -> R'' t (f' t e) v)
              (He : @interp_related_gen _ ident_interp _ _ _ R'' R e v)
          : @interp_related_gen
              _ ident_interp _ _ T2 R' R
              (@flat_map _ ident var1 ident var2 f f' T1 e)
              v.
        Proof using Type.
          revert dependent v; induction e as [|? ? ? IHe]; cbn [flat_map interp_related_gen] in *; intros; [ assumption | ].
          repeat first [ progress destruct_head'_ex
                       | progress destruct_head'_and
                       | progress subst
                       | eapply splice_interp_related_gen_of_ex; do 2 eexists; repeat apply conj;
                         [ eapply Hf | | reflexivity ]
                       | solve [ auto ]
                       | progress intros
                       | match goal with
                         | [ |- interp_related_gen _ _ _ (UnderLet _ _) _ ]
                           => cbn [interp_related_gen]; do 2 eexists; repeat apply conj;
                              [ | | reflexivity ]
                         end ].
        Qed.
      End with_var2_for_interp.
    End with_ident.

    Section reify.
      Local Notation type := (type.type base.type).
      Local Notation expr := (@expr.expr base.type ident).
      Local Notation UnderLets := (@UnderLets.UnderLets base.type ident).

      Section with_var.
        Context {var1 var2 : type -> Type}.
        Local Notation expr1 := (@expr.expr base.type ident var1).
        Local Notation expr2 := (@expr.expr base.type ident var2).
        Local Notation UnderLets1 := (@UnderLets.UnderLets base.type ident var1).
        Local Notation UnderLets2 := (@UnderLets.UnderLets base.type ident var2).

        Local Ltac wf_reify_and_let_binds_base_cps_t Hk :=
          repeat first [ lazymatch goal with
                         | [ H : expr.wf _ ?e1 ?e2, H' : reflect_list ?e1 = Some _, H'' : reflect_list ?e2 = None |- _ ]
                           => apply expr.wf_reflect_list in H; rewrite H', H'' in H; exfalso; clear -H; intuition congruence
                         | [ H : expr.wf _ ?e1 ?e2, H' : reflect_list ?e2 = Some _, H'' : reflect_list ?e1 = None |- _ ]
                           => apply expr.wf_reflect_list in H; rewrite H', H'' in H; exfalso; clear -H; intuition congruence
                         | [ H : expr.wf _ (reify_list _) (reify_list _) |- _ ] => apply expr.wf_reify_list in H
                         | [ H : List.Forall2 _ ?xs ?ys |- _ ]
                           => match xs with nil => idtac | _::_ => idtac end;
                              match ys with nil => idtac | _::_ => idtac end;
                              inversion H; clear H
                         end
                       | progress subst
                       | progress destruct_head' False
                       | progress expr.inversion_wf_constr
                       | progress expr.inversion_expr
                       | progress expr.invert_subst
                       | progress destruct_head'_sig
                       | progress destruct_head'_ex
                       | progress destruct_head'_and
                       | progress type.inversion_type
                       | progress base.type.inversion_type
                       | progress cbn [invert_Var invert_Literal ident.invert_Literal eq_rect f_equal f_equal2 type.decode fst snd projT1 projT2 invert_pair Option.bind combine list_rect length] in *
                       | progress cbv [type.try_transport type.try_transport_cps CPSNotations.cps_option_bind CPSNotations.cpsreturn CPSNotations.cpsbind CPSNotations.cpscall type.try_make_transport_cps id] in *
                       | rewrite base.try_make_transport_cps_correct in *
                       | progress type_beq_to_eq
                       | discriminate
                       | congruence
                       | apply Hk
                       | exists nil; reflexivity
                       | eexists (cons _ nil); reflexivity
                       | rewrite app_assoc; eexists; reflexivity
                       | progress wf_safe_t
                       | match goal with
                         | [ H : _ = _ :> ident _ |- _ ] => inversion H; clear H
                         end
                       | progress inversion_option
                       | progress break_innermost_match_hyps
                       | progress expr.inversion_wf_one_constr
                       | progress expr.invert_match_step
                       | match goal with |- wf _ _ _ _ => constructor end
                       | match goal with
                         | [ H : context[wf _ _ _ _] |- wf _ _ _ _ ] => apply H; eauto with nocore
                         | [ H : Forall2 (expr.wf _) ?xs ?ys |- Forall2 (expr.wf _) ?xs ?ys ]
                           => eapply Forall2_Proper_impl; [ .. | exact H ]; repeat intro; try reflexivity
                         end
                       | progress wf_unsafe_t_step
                       | match goal with
                         | [ H : context[match Compilers.reify_list ?ls with _ => _ end] |- _ ]
                           => is_var ls; destruct ls; rewrite ?expr.reify_list_cons, ?expr.reify_list_nil in H
                         | [ H : SubstVarLike.is_recursively_var_or_ident _ _ = _ |- _ ] => clear H
                         | [ H : forall x y, @?A x y \/ @?B x y -> @?C x y |- _ ]
                           => pose proof (fun x y pf => H x y (or_introl pf));
                              pose proof (fun x y pf => H x y (or_intror pf));
                              clear H
                         end ].

        Lemma wf_reify_and_let_binds_base_cps {t : base.type} {T1 T2} (e1 : expr1 (type.base t)) (e2 : expr2 (type.base t))
              (k1 : expr1 (type.base t) -> UnderLets1 T1) (k2 : expr2 (type.base t) -> UnderLets2 T2)
              (P : _ -> _ -> _ -> Prop) G
              (Hwf : expr.wf G e1 e2)
              (Hk : forall G' e1 e2, (exists seg, G' = seg ++ G) -> expr.wf G' e1 e2 -> wf P G' (k1 e1) (k2 e2))
          : wf P G (reify_and_let_binds_base_cps e1 T1 k1) (reify_and_let_binds_base_cps e2 T2 k2).
        Proof.
          revert dependent G; induction t; cbn [reify_and_let_binds_base_cps]; intros;
            cbv [option_rect];
            try (cbv [SubstVarLike.is_var_fst_snd_pair_opp_cast] in *; erewrite !SubstVarLike.wfT_is_recursively_var_or_ident by eassumption);
            break_innermost_match; wf_reify_and_let_binds_base_cps_t Hk; eauto.
          all: repeat match goal with H : list (sigT _) |- _ => revert dependent H end.
          all: revert dependent k1; revert dependent k2.
          all: lazymatch goal with
               | [ |- context[List.Forall2 _ ?l1 ?l2] ]
                 => is_var l1; is_var l2; revert dependent l2; induction l1; intro l2; destruct l2; intros
               end;
            wf_reify_and_let_binds_base_cps_t Hk.
        Qed.

        Lemma wf_let_bind_return {t} (e1 : expr1 t) (e2 : expr2 t)
              G
              (Hwf : expr.wf G e1 e2)
          : expr.wf G (let_bind_return e1) (let_bind_return e2).
        Proof.
          revert dependent G; induction t; intros; cbn [let_bind_return]; cbv [invert_Abs];
            wf_safe_t;
            expr.invert_match; expr.inversion_wf; try solve [ wf_t ].
          { apply wf_to_expr.
            pose (P := fun t => { e1e2 : expr1 t * expr2 t | expr.wf G (fst e1e2) (snd e1e2) }).
            pose ((exist _ (e1, e2) Hwf) : P _) as pkg.
            change e1 with (fst (proj1_sig pkg)).
            change e2 with (snd (proj1_sig pkg)).
            clearbody pkg; clear Hwf e1 e2.
            type.generalize_one_eq_var pkg; subst P; destruct pkg as [ [e1 e2] Hwf ].
            cbn [fst snd proj1_sig proj2_sig] in *.
            repeat match goal with
                   | [ |- context[proj1_sig (rew [fun t => @sig (@?A t) (@?P t)] ?pf in exist ?P0 ?x ?p)] ]
                     => progress replace (proj1_sig (rew pf in exist P0 x p)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[fst (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[snd (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [B] pf in y) by (case pf; reflexivity)
                   end.
            assert (H' : t = match t' with type.base t' => t' | _ => t end) by (subst; reflexivity).
            revert pf.
            rewrite H'; clear H'.
            induction Hwf; break_innermost_match; break_innermost_match_hyps;
              repeat first [ progress intros
                           | progress type.inversion_type
                           | progress base.type.inversion_type
                           | progress wf_safe_t
                           | progress cbn [of_expr fst snd splice eq_rect type.decode f_equal] in *
                           | match goal with
                             | [ H : forall pf : ?x = ?x, _ |- _ ] => specialize (H eq_refl)
                             | [ H : forall x y (pf : ?a = ?a), _ |- _ ] => specialize (fun x y => H x y eq_refl)
                             | [ |- wf _ _ _ _ ] => constructor
                             end
                           | solve [ eauto ]
                           | apply wf_reify_and_let_binds_base_cps ]. }
        Qed.
      End with_var.

      Section with_cast.
        Context (cast_outside_of_range : ZRange.zrange -> BinInt.Z -> BinInt.Z).
        Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).
        Local Notation interp := (@expr.interp _ _ _ (@ident_interp)).
        Local Notation Interp := (@expr.Interp _ _ _ (@ident_interp)).

        Lemma interp_reify_and_let_binds_base_cps
              {t e T k}
              (P : T -> Prop)
              (Hk : forall e', interp e' = interp e -> P (UnderLets.interp (@ident_interp) (k e')))
          : P (UnderLets.interp (@ident_interp) (@reify_and_let_binds_base_cps _ t e T k)).
        Proof.
          revert T k P Hk; induction t; cbn [reify_and_let_binds_base_cps]; intros;
            cbv [option_rect]; break_innermost_match;
            expr.invert_subst; cbn [type.related UnderLets.interp fst snd expr.interp ident_interp] in *; subst; eauto;
              repeat first [ progress intros
                           | reflexivity
                           | progress cbn [expr.interp ident_interp List.map]
                           | apply (f_equal2 (@pair _ _))
                           | apply (f_equal2 (@cons _))
                           | apply (f_equal (@Some _))
                           | match goal with
                             | [ H : _ |- _ ] => apply H; clear H
                             | [ H : SubstVarLike.is_var_fst_snd_pair_opp_cast (reify_list _) = _ |- _ ] => clear H
                             | [ H : context[interp (reify_list _)] |- _ ]
                               => rewrite expr.interp_reify_list in H
                             | [ |- ?Q (UnderLets.interp _ (list_rect ?P ?X ?Y ?ls ?k)) ]
                               => is_var ls; is_var k;
                                  revert dependent k; induction ls; cbn [list_rect];
                                  [ | generalize dependent (list_rect P X Y) ]; intros
                             end ].
        Qed.

        Lemma interp_reify_and_let_binds_base
              {t e}
          : interp (UnderLets.interp (@ident_interp) (@reify_and_let_binds_base_cps _ t e _ UnderLets.Base))
            = interp e.
        Proof.
          eapply interp_reify_and_let_binds_base_cps; cbn [UnderLets.interp].
          trivial.
        Qed.

        Local Ltac interp_to_expr_reify_and_let_binds_base_cps_t Hk :=
          repeat first [ progress subst
                       | progress destruct_head' False
                       | progress destruct_head'_and
                       | progress destruct_head' iff
                       | progress specialize_by_assumption
                       | progress expr.inversion_wf_constr
                       | progress expr.inversion_expr
                       | progress expr.invert_subst
                       | progress destruct_head'_sig
                       | progress destruct_head'_ex
                       | progress destruct_head'_and
                       | progress type.inversion_type
                       | progress base.type.inversion_type
                       | progress cbn [invert_Var invert_Literal ident.invert_Literal eq_rect f_equal f_equal2 type.decode fst snd projT1 projT2 invert_pair Option.bind to_expr expr.interp ident.interp ident.gen_interp type.eqv length list_rect combine In] in *
                       | progress cbv [type.try_transport type.try_transport_cps CPSNotations.cps_option_bind CPSNotations.cpsreturn CPSNotations.cpsbind CPSNotations.cpscall type.try_make_transport_cps id] in *
                       | rewrite base.try_make_transport_cps_correct in *
                       | progress type_beq_to_eq
                       | discriminate
                       | congruence
                       | apply Hk
                       | exists nil; reflexivity
                       | eexists (cons _ nil); reflexivity
                       | rewrite app_assoc; eexists; reflexivity
                       | rewrite expr.reify_list_cons
                       | rewrite expr.reify_list_nil
                       | progress interp_safe_t
                       | match goal with
                         | [ H : _ = _ :> ident _ |- _ ] => inversion H; clear H
                         | [ H : forall t v1 v2, In _ _ -> _ == _, H' : In _ _ |- _ ] => apply H in H'
                         end
                       | progress inversion_option
                       | progress break_innermost_match_hyps
                       | progress expr.inversion_wf_one_constr
                       | progress expr.invert_match_step
                       | match goal with
                         | [ |- ?R (expr.interp _ ?e1) (expr.interp _ ?e2) ]
                           => solve [ eapply (@expr.wf_interp_Proper _ _ _ e1 e2); eauto ]
                         | [ H : context[reflect_list (reify_list _)] |- _ ] => rewrite expr.reflect_reify_list in H
                         | [ H : forall x y, @?A x y \/ @?B x y -> @?C x y |- _ ]
                           => pose proof (fun x y pf => H x y (or_introl pf));
                              pose proof (fun x y pf => H x y (or_intror pf));
                              clear H
                         | [ H : List.Forall2 _ ?xs ?ys |- _ ]
                           => match xs with nil => idtac | _::_ => idtac end;
                              match ys with nil => idtac | _::_ => idtac end;
                              inversion H; clear H
                         end
                       | progress interp_unsafe_t_step
                       | match goal with
                         | [ H : expr.wf _ (reify_list _) ?e |- _ ]
                           => is_var e; destruct (reflect_list e) eqn:?; expr.invert_subst;
                              [ rewrite expr.wf_reify_list in H | apply expr.wf_reflect_list in H ]
                         | [ H : SubstVarLike.is_recursively_var_or_ident _ _ = _ |- _ ] => clear H
                         | [ H : context[expr.interp _ _ = _] |- expr.interp _ (to_expr _) = ?k2 _ ]
                           => erewrite H; clear H;
                              [ match goal with
                                | [ |- ?k (expr.interp ?ii ?e) = ?k' ?v ]
                                  => has_evar e;
                                     let p := fresh in
                                     set (p := expr.interp ii e);
                                     match v with
                                     | context G[expr.interp ii ?e']
                                       => unify e e'; let v' := context G[p] in change (k p = k' v')
                                     end;
                                     clearbody p; reflexivity
                                end
                              | .. ]
                         end ].

        Lemma interp_to_expr_reify_and_let_binds_base_cps {t : base.type} {t' : base.type} (e1 : expr (type.base t)) (e2 : expr (type.base t))
              G
              (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> v1 == v2)
              (Hwf : expr.wf G e1 e2)
              (k1 : expr (type.base t) -> UnderLets _ (expr (type.base t')))
              (k2 : base.interp t -> base.interp t')
              (Hk : forall e1 v, interp e1 == v -> interp (to_expr (k1 e1)) == k2 v)
          : interp (to_expr (reify_and_let_binds_base_cps e1 _ k1)) == k2 (interp e2).
        Proof.
          revert dependent G; revert dependent t'; induction t; cbn [reify_and_let_binds_base_cps]; intros;
            cbv [option_rect];
            try (cbv [SubstVarLike.is_var_fst_snd_pair_opp_cast] in *; erewrite !SubstVarLike.wfT_is_recursively_var_or_ident by eassumption);
            break_innermost_match; interp_to_expr_reify_and_let_binds_base_cps_t Hk.
          all: repeat match goal with H : list (sigT _) |- _ => revert dependent H end.
          all: revert dependent k1; revert dependent k2.
          all: lazymatch goal with
               | [ |- context[List.Forall2 _ ?l1 ?l2 ] ]
                 => is_var l1; is_var l2; revert dependent l2; induction l1; intro l2; destruct l2; intros
               end;
            interp_to_expr_reify_and_let_binds_base_cps_t Hk.
        Qed.

        Lemma interp_let_bind_return {t} (e1 e2 : expr t)
              G
              (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> v1 == v2)
              (Hwf : expr.wf G e1 e2)
          : interp (let_bind_return e1) == interp e2.
        Proof.
          revert dependent G; induction t; intros; cbn [let_bind_return type.eqv expr.interp] in *; cbv [invert_Abs respectful] in *;
            repeat first [ progress wf_safe_t
                         | progress expr.invert_subst
                         | progress expr.invert_match
                         | progress expr.inversion_wf
                         | progress break_innermost_match_hyps
                         | progress destruct_head' False
                         | solve [ wf_t ]
                         | match goal with
                           | [ H : _ |- expr.interp _ (let_bind_return ?e0) == expr.interp _ ?e ?v ]
                             => eapply (H e0 (e @ $v)%expr (cons _ _)); [ .. | solve [ wf_t ] ]; solve [ wf_t ]
                           | [ H : _ |- expr.interp _ (let_bind_return ?e0) == expr.interp _ ?e ?v ]
                             => cbn [expr.interp]; eapply H; [ | solve [ wf_t ] ]; solve [ wf_t ]
                           end ];
            [].
          { pose (P := fun t => { e1e2 : expr t * expr t | expr.wf G (fst e1e2) (snd e1e2) }).
            pose ((exist _ (e1, e2) Hwf) : P _) as pkg.
            change e1 with (fst (proj1_sig pkg)).
            change e2 with (snd (proj1_sig pkg)).
            clearbody pkg; clear Hwf e1 e2.
            type.generalize_one_eq_var pkg; subst P; destruct pkg as [ [e1 e2] Hwf ].
            cbn [fst snd proj1_sig proj2_sig] in *.
            repeat match goal with
                   | [ |- context[proj1_sig (rew [fun t => @sig (@?A t) (@?P t)] ?pf in exist ?P0 ?x ?p)] ]
                     => progress replace (proj1_sig (rew pf in exist P0 x p)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[fst (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[snd (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [B] pf in y) by (case pf; reflexivity)
                   end.
            assert (H' : t = match t' with type.base t' => t' | _ => t end) by (subst; reflexivity).
            revert pf.
            rewrite H'; clear H'.
            induction Hwf; break_innermost_match; break_innermost_match_hyps;
              repeat first [ progress intros
                           | progress type.inversion_type
                           | progress base.type.inversion_type
                           | progress wf_safe_t
                           | progress cbn [of_expr fst snd splice eq_rect type.decode f_equal to_expr] in *
                           | match goal with
                             | [ H : forall pf : ?x = ?x, _ |- _ ] => specialize (H eq_refl)
                             | [ H : forall x (pf : ?a = ?a), _ |- _ ] => specialize (fun x => H x eq_refl)
                             | [ H : forall x y (pf : ?a = ?a), _ |- _ ] => specialize (fun x y => H x y eq_refl)
                             | [ H : forall x y z (pf : ?a = ?a), _ |- _ ] => specialize (fun x y z => H x y z eq_refl)
                             | [ |- context[(expr_let x := _ in _)%expr] ] => progress cbn [expr.interp]; cbv [LetIn.Let_In]
                             | [ H : context[expr.interp _ _ = expr.interp _ _] |- expr.interp _ _ = expr.interp _ _ ]
                               => eapply H; eauto with nocore
                             end
                           | solve [ eauto ]
                           | solve [ eapply expr.wf_interp_Proper; eauto ] ].
            all: eapply interp_to_expr_reify_and_let_binds_base_cps with (k1:=Base) (k2:=(fun x => x)); eauto; wf_safe_t. }
        Qed.

        Ltac recurse_interp_related_step :=
          let do_replace v :=
              ((tryif is_evar v then fail else idtac);
               let v' := open_constr:(_) in
               let v'' := fresh in
               cut (v = v'); [ generalize v; intros v'' ?; subst v'' | symmetry ]) in
          match goal with
          | _ => progress cbv [expr.interp_related] in *
          | _ => progress cbn [type.interp]
          | [ |- context[(fst ?x, snd ?x)] ] => progress eta_expand
          | [ |- context[match ?x with pair a b => _ end] ] => progress eta_expand
          | [ |- expr.interp_related_gen ?ident_interp ?R ?f ?v ]
            => do_replace v
          | [ |- exists (fv : ?T1 -> ?T2) (ev : ?T1),
                _ /\ _ /\ fv ev = ?x ]
            => first [ do_replace x
                     | is_evar x; do 2 eexists; repeat apply conj; [ | | reflexivity ] ]
          | _ => progress intros
          | [ |- expr.interp_related_gen _ _ _ ?ev ] => is_evar ev; eassumption
          | [ |- expr.interp_related_gen _ _ (?f @ ?x) ?ev ]
            => is_evar ev;
               let fh := fresh in
               let xh := fresh in
               set (fh := f); set (xh := x); cbn [expr.interp_related_gen]; subst fh xh;
               do 2 eexists; repeat apply conj; [ | | reflexivity ]
          | [ |- expr.interp_related_gen _ _ (expr.Abs ?f) _ ]
            => let fh := fresh in set (fh := f); cbn [expr.interp_related_gen]; subst fh
          | [ |- expr.interp_related_gen _ _ (expr.Ident ?idc) ?ev ]
            => is_evar ev;
               cbn [expr.interp_related_gen]; apply ident.gen_interp_Proper; reflexivity
          | [ H : ?x == _ |- ?x == _ ] => exact H
          | [ |- ?x = ?y ] => tryif first [ has_evar x | has_evar y ] then fail else (progress subst)
          | [ |- ?x = ?x ] => tryif has_evar x then fail else reflexivity
          | [ |- ?ev = _ ] => is_evar ev; reflexivity
          | [ |- _ = ?ev ] => is_evar ev; reflexivity
          end.

        Local Ltac do_interp_related :=
          repeat first [ progress cbv beta
                       | progress recurse_interp_related_step
                       | eassumption
                       | do 2 eexists; repeat apply conj; intros
                       | match goal with
                         | [ H : _ |- _ ] => apply H; clear H; solve [ do_interp_related ]
                         end ].

        Lemma reify_and_let_binds_base_interp_related_of_ex {t e T k T' R} {v : T'}
          : (exists kv xv,
                expr.interp_related (@ident_interp) e xv
                /\ (forall x1 x2,
                       expr.interp_related (@ident_interp) x1 x2
                       -> interp_related (@ident_interp) R (k x1) (kv x2))
                /\ kv xv = v)
            -> interp_related (@ident_interp) R (@reify_and_let_binds_base_cps _ t e T k) v.
        Proof using Type.
          cbv [expr.interp_related]; revert T T' k R v; induction t.
          all: repeat first [ progress cbn [expr.interp_related_gen interp_related reify_and_let_binds_base_cps fst snd] in *
                            | progress cbv [expr.interp_related option_rect] in *
                            | progress intros
                            | assumption
                            | progress destruct_head'_ex
                            | progress destruct_head'_and
                            | break_innermost_match_step
                            | progress expr.invert_subst
                            | solve [ eauto ]
                            | solve [ do_interp_related ]
                            | match goal with
                              | [ H : expr.interp_related_gen ?ii _ (reify_list ?ls1) ?ls2 |- _ ] => change (expr.interp_related ii (reify_list ls1) ls2) in H; rewrite expr.reify_list_interp_related_iff in H
                              end ].
          all: match goal with
               | [ H : SubstVarLike.is_var_fst_snd_pair_opp_cast _ = _ |- _ ] => clear H
               end.
          all: lazymatch goal with
               | [ H : List.Forall2 _ ?ls1 ?ls2
                   |- interp_related _ _
                                     (list_rect ?Pv ?Nv ?Cv ?ls1 ?k)
                                     (?f ?ls2) ]
                 => let P := fresh "P" in
                    let N := fresh "N" in
                    let C := fresh "C" in
                    is_var k; is_var f; is_var ls1; is_var ls2;
                      set (P:=Pv); set (N:=Nv); set (C:=Cv);
                        revert dependent f; intro f; revert dependent k; intro k; revert f k;
                          induction H; cbn [list_rect]; intros
               end.
          all: repeat match goal with
                      | [ F := ?f |- _ ]
                        => match goal with
                           | [ |- context G[F ?x] ]
                             => let G' := context G[f x] in
                                change G'; cbv beta
                           end
                      | [ H : forall x1 x2, ?R x1 x2 -> ?R' (?f1 x1) (?f2 x2) |- ?R' (?f1 _) (?f2 _) ]
                        => apply H; clear H
                      | [ |- expr.interp_related_gen _ _ _ nil ] => reflexivity
                      | [ H : _ |- interp_related _ _ (reify_and_let_binds_base_cps _ _ _) _ ] => apply H
                      | [ |- exists kv xv, _ /\ _ /\ kv xv = ?f (?x :: ?xs) ]
                        => exists (fun x' => f (x' :: xs)), x; repeat apply conj; [ | | reflexivity ]
                      | _ => assumption
                      | _ => progress intros
                      | [ IH : (forall k k', _ -> ?R (list_rect ?P ?N ?C ?ls1 k') (k ?ls2))
                          |- ?R (list_rect ?P ?N ?C ?ls1 ?k'v) ?RHS ]
                        => let kv := match (eval pattern ls2 in RHS) with ?kv _ => kv end in
                           apply (IH kv k'v); clear IH
                      | _ => solve [ do_interp_related ]
                      end.
        Qed.

        Lemma reify_and_let_binds_base_interp_related {t e v}
          : expr.interp_related (@ident_interp) e v
            -> interp_related (@ident_interp) (expr.interp_related (@ident_interp)) (@reify_and_let_binds_base_cps _ t e _ Base) v.
        Proof using Type.
          intro; eapply reify_and_let_binds_base_interp_related_of_ex.
          eexists id, _; eauto.
        Qed.

        Lemma Interp_LetBindReturn {t} (e : expr.Expr t) (Hwf : expr.Wf e) : Interp (LetBindReturn e) == Interp e.
        Proof.
          apply interp_let_bind_return with (G:=nil); cbn [List.In]; eauto; tauto.
        Qed.
      End with_cast.

      Lemma Wf_LetBindReturn {t} (e : expr.Expr t) (Hwf : expr.Wf e) : expr.Wf (LetBindReturn e).
      Proof. intros ??; apply wf_let_bind_return, Hwf. Qed.
    End reify.
  End UnderLets.

  Hint Resolve UnderLets.Wf_LetBindReturn : wf.
  Hint Rewrite @UnderLets.Interp_LetBindReturn : interp.
End Compilers.