aboutsummaryrefslogtreecommitdiff
path: root/src/Specific/GF25519.v
blob: 920aeaef8c3cd22ea055ec286ae586539158c6bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
Require Import Crypto.BaseSystem.
Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParams.
Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParamProofs.
Require Import Crypto.ModularArithmetic.ModularBaseSystem.
Require Import Crypto.ModularArithmetic.ModularBaseSystemProofs.
Require Import Crypto.ModularArithmetic.ModularBaseSystemOpt.
Require Import Coq.Lists.List Crypto.Util.ListUtil.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Tactics.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Algebra.
Import ListNotations.
Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
Local Open Scope Z.

(* BEGIN precomputation. *)

Definition modulus : Z := Eval compute in 2^255 - 19.
Lemma prime_modulus : prime modulus. Admitted.
Definition int_width := 32%Z.

Instance params25519 : PseudoMersenneBaseParams modulus.
  construct_params prime_modulus 10%nat 255.
Defined.

Definition fe25519 := Eval compute in (tuple Z (length limb_widths)).

Definition mul2modulus : fe25519 :=
  Eval compute in (from_list_default 0%Z (length limb_widths) (construct_mul2modulus params25519)).

Instance subCoeff : SubtractionCoefficient.
  apply Build_SubtractionCoefficient with (coeff := mul2modulus).
  vm_decide.
Defined.

Instance carryChain : CarryChain limb_widths.
  apply Build_CarryChain with (carry_chain := (rev [0;1;2;3;4;5;6;7;8;9;0;1])%nat).
  intros.
  repeat (destruct H as [|H]; [subst; vm_compute; repeat constructor | ]).
  contradiction H.
Defined.

Definition freezePreconditions25519 : freezePreconditions params25519 int_width.
Proof.
  constructor; compute_preconditions.
Defined.

(* Wire format for [pack] and [unpack] *)
Definition wire_widths := Eval compute in (repeat 32 7 ++ 31 :: nil).

Definition wire_digits := Eval compute in (tuple Z (length wire_widths)).

Lemma wire_widths_nonneg : forall w, In w wire_widths -> 0 <= w.
Proof.
  intros.
  repeat (destruct H as [|H]; [subst; vm_compute; congruence | ]).
  contradiction H.
Qed.

Lemma bits_eq : sum_firstn limb_widths (length limb_widths) = sum_firstn wire_widths (length wire_widths).
Proof.
  reflexivity.
Qed.

Lemma modulus_gt_2 : 2 < modulus. Proof. cbv; congruence. Qed.

(* Temporarily, we'll use addition chains equivalent to double-and-add. This is pending
   finding the real, more optimal chains from previous work. *)
Fixpoint pow2Chain'' p (pow2_index acc_index : nat) chain_acc : list (nat * nat) :=
  match p with
  | xI p' => pow2Chain'' p' 1 0
               (chain_acc ++ (pow2_index, pow2_index) :: (0%nat, S acc_index) :: nil)
  | xO p' => pow2Chain'' p' 0 (S acc_index)
               (chain_acc ++ (pow2_index, pow2_index)::nil)
  | xH => (chain_acc ++ (pow2_index, pow2_index) :: (0%nat, S acc_index) :: nil)
  end.

Fixpoint pow2Chain' p index  :=
  match p with
  | xI p' => pow2Chain'' p' 0 0 (repeat (0,0)%nat index)
  | xO p' => pow2Chain' p' (S index)
  | xH => repeat (0,0)%nat index
  end.

Definition pow2_chain p :=
  match p with
  | xH => nil
  | _ => pow2Chain' p 0
  end.

Definition invChain := Eval compute in pow2_chain (Z.to_pos (modulus - 2)).

Instance inv_ec : ExponentiationChain (modulus - 2).
  apply Build_ExponentiationChain with (chain := invChain).
  reflexivity.
Defined.

(* Note : use caution copying square root code to other primes. The (modulus / 8 + 1) chains are
   for primes that are 5 mod 8; if the prime is 3 mod 4 then use (modulus / 4 + 1). *)
Definition sqrtChain := Eval compute in pow2_chain (Z.to_pos (modulus / 8 + 1)).

Instance sqrt_ec : ExponentiationChain (modulus / 8 + 1).
  apply Build_ExponentiationChain with (chain := sqrtChain).
  reflexivity.
Defined.

Arguments chain {_ _ _} _.

(* END precomputation *)

(* Precompute constants *)
Definition k_ := Eval compute in k.
Definition k_subst : k = k_ := eq_refl k_.

Definition c_ := Eval compute in c.
Definition c_subst : c = c_ := eq_refl c_.

Definition one_ := Eval compute in one.
Definition one_subst : one = one_ := eq_refl one_.

Definition zero_ := Eval compute in zero.
Definition zero_subst : zero = zero_ := eq_refl zero_.

Definition modulus_digits_ := Eval compute in ModularBaseSystemList.modulus_digits.
Definition modulus_digits_subst : ModularBaseSystemList.modulus_digits = modulus_digits_ := eq_refl modulus_digits_.

Local Opaque Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb Z.leb ModularBaseSystemList.neg.

Definition app_7 {T} (f : wire_digits) (P : wire_digits -> T) : T.
Proof.
  cbv [wire_digits] in *.
  set (f0 := f).
  repeat (let g := fresh "g" in destruct f as [f g]).
  apply P.
  apply f0.
Defined.

Definition app_7_correct {T} f (P : wire_digits -> T) : app_7 f P = P f.
Proof.
  intros.
  cbv [wire_digits] in *.
  repeat match goal with [p : (_*Z)%type |- _ ] => destruct p end.
  reflexivity.
Qed.

Definition app_10 {T} (f : fe25519) (P : fe25519 -> T) : T.
Proof.
  cbv [fe25519] in *.
  set (f0 := f).
  repeat (let g := fresh "g" in destruct f as [f g]).
  apply P.
  apply f0.
Defined.

Definition app_10_correct {T} f (P : fe25519 -> T) : app_10 f P = P f.
Proof.
  intros.
  cbv [fe25519] in *.
  repeat match goal with [p : (_*Z)%type |- _ ] => destruct p end.
  reflexivity.
Qed.

Definition appify2 {T} (op : fe25519 -> fe25519 -> T) (f g : fe25519) :=
  app_10 f (fun f0 => (app_10 g (fun g0 => op f0 g0))).

Lemma appify2_correct : forall {T} op f g, @appify2 T op f g = op f g.
Proof.
  intros. cbv [appify2].
  etransitivity; apply app_10_correct.
Qed.

Definition add_sig (f g : fe25519) :
  { fg : fe25519 | fg = add_opt f g}.
Proof.
  eexists.
  rewrite <-(@appify2_correct fe25519).
  cbv.
  reflexivity.
Defined.

Definition add (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig add_sig] in
  proj1_sig (add_sig f g).

Definition add_correct (f g : fe25519)
  : add f g = add_opt f g :=
  Eval cbv beta iota delta [proj1_sig add_sig] in
  proj2_sig (add_sig f g).

Definition carry_add_sig (f g : fe25519) :
  { fg : fe25519 | fg = carry_add_opt f g}.
Proof.
  eexists.
  rewrite <-(@appify2_correct fe25519).
  cbv.
  autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. (* FIXME: The speed of this rewrite depends on the fact that we have 10 limbs; there are some lemmas in [zsimplify_Z_to_pos] which are specific to 10. *)
  autorewrite with zsimplify_Z_to_pos; cbv.
  reflexivity.
Defined.

Definition carry_add (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig carry_add_sig] in
  proj1_sig (carry_add_sig f g).

Definition carry_add_correct (f g : fe25519)
  : carry_add f g = carry_add_opt f g :=
  Eval cbv beta iota delta [proj1_sig carry_add_sig] in
  proj2_sig (carry_add_sig f g).

Definition sub_sig (f g : fe25519) :
  { fg : fe25519 | fg = sub_opt f g}.
Proof.
  eexists.
  rewrite <-(@appify2_correct fe25519).
  cbv.
  reflexivity.
Defined.

Definition sub (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig sub_sig] in
  proj1_sig (sub_sig f g).

Definition sub_correct (f g : fe25519)
  : sub f g = sub_opt f g :=
  Eval cbv beta iota delta [proj1_sig sub_sig] in
  proj2_sig (sub_sig f g).

Definition carry_sub_sig (f g : fe25519) :
  { fg : fe25519 | fg = carry_sub_opt f g}.
Proof.
  eexists.
  rewrite <-(@appify2_correct fe25519).
  cbv.
  autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. (* FIXME: The speed of this rewrite depends on the fact that we have 10 limbs; there are some lemmas in [zsimplify_Z_to_pos] which are specific to 10. *)
  autorewrite with zsimplify_Z_to_pos; cbv.
  reflexivity.
Defined.

Definition carry_sub (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig carry_sub_sig] in
  proj1_sig (carry_sub_sig f g).

Definition carry_sub_correct (f g : fe25519)
  : carry_sub f g = carry_sub_opt f g :=
  Eval cbv beta iota delta [proj1_sig carry_sub_sig] in
  proj2_sig (carry_sub_sig f g).

(* For multiplication, we add another layer of definition so that we can
   rewrite under the [let] binders. *)
Definition mul_simpl_sig (f g : fe25519) :
  { fg : fe25519 | fg = carry_mul_opt k_ c_ f g}.
Proof.
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists.
  cbv. (* N.B. The slow part of this is computing with [Z_div_opt].
               It would be much faster if we could take advantage of
               the form of [base_from_limb_widths] when doing
               division, so we could do subtraction instead. *)
  autorewrite with zsimplify_fast.
  reflexivity.
Defined.

Definition mul_simpl (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig mul_simpl_sig] in
  let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
  let '(g0, g1, g2, g3, g4, g5, g6, g7, g8, g9) := g in
  proj1_sig (mul_simpl_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)
                           (g0, g1, g2, g3, g4, g5, g6, g7, g8, g9)).

Definition mul_simpl_correct (f g : fe25519)
  : mul_simpl f g = carry_mul_opt k_ c_ f g.
Proof.
  pose proof (proj2_sig (mul_simpl_sig f g)).
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  assumption.
Qed.

Definition mul_sig (f g : fe25519) :
  { fg : fe25519 | fg = carry_mul_opt k_ c_ f g}.
Proof.
  eexists.
  rewrite <-mul_simpl_correct.
  rewrite <-(@appify2_correct fe25519).
  cbv.
  autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. (* FIXME: The speed of this rewrite depends on the fact that we have 10 limbs; there are some lemmas in [zsimplify_Z_to_pos] which are specific to 10. *)
  autorewrite with zsimplify_Z_to_pos; cbv.
  reflexivity.
Defined.

Definition mul (f g : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig mul_sig] in
  proj1_sig (mul_sig f g).

Definition mul_correct (f g : fe25519)
  : mul f g = carry_mul_opt k_ c_ f g :=
  Eval cbv beta iota delta [proj1_sig add_sig] in
  proj2_sig (mul_sig f g).

Definition opp_sig (f : fe25519) :
  { g : fe25519 | g = opp_opt f }.
Proof.
  eexists.
  cbv [opp_opt].
  rewrite <-sub_correct.
  rewrite zero_subst.
  cbv [sub].
  reflexivity.
Defined.

Definition opp (f : fe25519) : fe25519
  := Eval cbv beta iota delta [proj1_sig opp_sig] in proj1_sig (opp_sig f).

Definition opp_correct (f : fe25519)
  : opp f = opp_opt f
  := Eval cbv beta iota delta [proj2_sig add_sig] in proj2_sig (opp_sig f).

Definition carry_opp_sig (f : fe25519) :
  { g : fe25519 | g = carry_opp_opt f }.
Proof.
  eexists.
  cbv [carry_opp_opt].
  rewrite <-carry_sub_correct.
  rewrite zero_subst.
  cbv [carry_sub].
  reflexivity.
Defined.

Definition carry_opp (f : fe25519) : fe25519
  := Eval cbv beta iota delta [proj1_sig carry_opp_sig] in proj1_sig (carry_opp_sig f).

Definition carry_opp_correct (f : fe25519)
  : carry_opp f = carry_opp_opt f
  := Eval cbv beta iota delta [proj2_sig add_sig] in proj2_sig (carry_opp_sig f).

Definition pow (f : fe25519) chain := fold_chain_opt one_ mul chain [f].

Lemma pow_correct (f : fe25519) : forall chain, pow f chain = pow_opt k_ c_ one_ f chain.
Proof.
  cbv [pow pow_opt]; intros.
  rewrite !fold_chain_opt_correct.
  apply Proper_fold_chain; try reflexivity.
  intros; subst; apply mul_correct.
Qed.

(* Now that we have [pow], we can compute sqrt of -1 for use
   in sqrt function (this is not needed unless the prime is
   5 mod 8) *)
Local Transparent Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb andb.

Definition sqrt_m1 := Eval vm_compute in (pow (encode (F.of_Z _ 2)) (pow2_chain (Z.to_pos ((modulus - 1) / 4)))).

Lemma sqrt_m1_correct : rep (mul sqrt_m1 sqrt_m1) (F.opp 1%F).
Proof.
  cbv [rep].
  apply F.eq_to_Z_iff.
  vm_compute.
  reflexivity.
Qed.

Local Opaque Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb andb.

Definition inv_sig (f : fe25519) :
  { g : fe25519 | g = inv_opt k_ c_ one_ f }.
Proof.
  eexists; cbv [inv_opt].
  rewrite <-pow_correct.
  cbv - [mul].
  reflexivity.
Defined.

Definition inv (f : fe25519) : fe25519
  := Eval cbv beta iota delta [proj1_sig inv_sig] in proj1_sig (inv_sig f).

Definition inv_correct (f : fe25519)
  : inv f = inv_opt k_ c_ one_ f
  := Eval cbv beta iota delta [proj2_sig inv_sig] in proj2_sig (inv_sig f).

Definition mbs_field := modular_base_system_field modulus_gt_2.

Import Morphisms.

Local Existing Instance prime_modulus.

Lemma field25519_and_homomorphisms
  : @field fe25519 eq zero_ one_ opp add sub mul inv div
    /\ @Ring.is_homomorphism
         (F modulus) Logic.eq F.one F.add F.mul
         fe25519 eq one_ add mul encode
    /\ @Ring.is_homomorphism
         fe25519 eq one_ add mul
         (F modulus) Logic.eq F.one F.add F.mul
         decode.
Proof.
  eapply @Field.field_and_homomorphism_from_redundant_representation.
  { exact (F.field_modulo _). }
  { apply encode_rep. }
  { reflexivity. }
  { reflexivity. }
  { reflexivity. }
  { intros; rewrite opp_correct, opp_opt_correct; apply opp_rep; reflexivity. }
  { intros; rewrite add_correct, add_opt_correct; apply add_rep; reflexivity. }
  { intros; rewrite sub_correct, sub_opt_correct; apply sub_rep; reflexivity. }
  { intros; rewrite mul_correct, carry_mul_opt_correct by reflexivity; apply carry_mul_rep; reflexivity. }
  { intros; rewrite inv_correct, inv_opt_correct by reflexivity; apply inv_rep; reflexivity. }
  { intros; apply encode_rep. }
Qed.

Definition field25519 : @field fe25519 eq zero_ one_ opp add sub mul inv div := proj1 field25519_and_homomorphisms.

Lemma carry_field25519_and_homomorphisms
  : @field fe25519 eq zero_ one_ carry_opp carry_add carry_sub mul inv div
    /\ @Ring.is_homomorphism
         (F modulus) Logic.eq F.one F.add F.mul
         fe25519 eq one_ carry_add mul encode
    /\ @Ring.is_homomorphism
         fe25519 eq one_ carry_add mul
         (F modulus) Logic.eq F.one F.add F.mul
         decode.
Proof.
  eapply @Field.field_and_homomorphism_from_redundant_representation.
  { exact (F.field_modulo _). }
  { apply encode_rep. }
  { reflexivity. }
  { reflexivity. }
  { reflexivity. }
  { intros; rewrite carry_opp_correct, carry_opp_opt_correct, carry_opp_rep; apply opp_rep; reflexivity. }
  { intros; rewrite carry_add_correct, carry_add_opt_correct, carry_add_rep; apply add_rep; reflexivity. }
  { intros; rewrite carry_sub_correct, carry_sub_opt_correct, carry_sub_rep; apply sub_rep; reflexivity. }
  { intros; rewrite mul_correct, carry_mul_opt_correct by reflexivity; apply carry_mul_rep; reflexivity. }
  { intros; rewrite inv_correct, inv_opt_correct by reflexivity; apply inv_rep; reflexivity. }
  { intros; apply encode_rep. }
Qed.

Definition carry_field25519 : @field fe25519 eq zero_ one_ carry_opp carry_add carry_sub mul inv div := proj1 carry_field25519_and_homomorphisms.

Lemma homomorphism_F25519 :
  @Ring.is_homomorphism
    (F modulus) Logic.eq F.one F.add F.mul
    fe25519 eq one add mul encode.
Proof. apply field25519_and_homomorphisms. Qed.


Lemma homomorphism_carry_F25519 :
  @Ring.is_homomorphism
    (F modulus) Logic.eq F.one F.add F.mul
    fe25519 eq one carry_add mul encode.
Proof. apply carry_field25519_and_homomorphisms. Qed.

Definition ge_modulus_sig (f : fe25519) :
  { b : Z | b = ge_modulus_opt (to_list 10 f) }.
Proof.
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists; cbv [ge_modulus_opt].
  rewrite !modulus_digits_subst.
  cbv.
  reflexivity.
Defined.

Definition ge_modulus (f : fe25519) : Z :=
  Eval cbv beta iota delta [proj1_sig ge_modulus_sig] in
    let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
    proj1_sig (ge_modulus_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)).

Definition ge_modulus_correct (f : fe25519) :
  ge_modulus f = ge_modulus_opt (to_list 10 f).
Proof.
  pose proof (proj2_sig (ge_modulus_sig f)).
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  assumption.
Defined.

Definition freeze_sig (f : fe25519) :
  { f' : fe25519 | f' = from_list_default 0 10 (freeze_opt (int_width := int_width) c_ (to_list 10 f)) }.
Proof.
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists; cbv [freeze_opt int_width].
  cbv [to_list to_list'].
  cbv [conditional_subtract_modulus_opt].
  rewrite !modulus_digits_subst.
  cbv - [from_list_default].
  (* TODO(jgross,jadep): use Reflective linearization here? *)
  repeat (
       set_evars; rewrite app_Let_In_nd; subst_evars;
       eapply Proper_Let_In_nd_changebody; [reflexivity|intro]).
  cbv [from_list_default from_list_default'].
  reflexivity.
Defined.

Definition freeze (f : fe25519) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig freeze_sig] in
    let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
    proj1_sig (freeze_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)).

Definition freeze_correct (f : fe25519)
  : freeze f = from_list_default 0 10 (freeze_opt (int_width := int_width) c_ (to_list 10 f)).
Proof.
  pose proof (proj2_sig (freeze_sig f)).
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  assumption.
Defined.

Definition fieldwiseb_sig (f g : fe25519) :
  { b | b = @fieldwiseb Z Z 10 Z.eqb f g }.
Proof.
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists.
  cbv.
  reflexivity.
Defined.

Definition fieldwiseb (f g : fe25519) : bool
  := Eval cbv beta iota delta [proj1_sig fieldwiseb_sig] in
      let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
      let '(g0, g1, g2, g3, g4, g5, g6, g7, g8, g9) := g in
      proj1_sig (fieldwiseb_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)
                                (g0, g1, g2, g3, g4, g5, g6, g7, g8, g9)).

Lemma fieldwiseb_correct (f g : fe25519)
  : fieldwiseb f g = @Tuple.fieldwiseb Z Z 10 Z.eqb f g.
Proof.
  set (f' := f); set (g' := g).
  hnf in f, g; destruct_head' prod.
  exact (proj2_sig (fieldwiseb_sig f' g')).
Qed.

Definition eqb_sig (f g : fe25519) :
  { b | b = eqb int_width f g }.
Proof.
  cbv [eqb].
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists.
  cbv [ModularBaseSystem.freeze int_width].
  rewrite <-!from_list_default_eq with (d := 0).
  rewrite <-!(freeze_opt_correct c_) by auto using length_to_list.
  rewrite <-!freeze_correct.
  rewrite <-fieldwiseb_correct.
  reflexivity.
Defined.

Definition eqb (f g : fe25519) : bool
  := Eval cbv beta iota delta [proj1_sig eqb_sig] in
      let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
      let '(g0, g1, g2, g3, g4, g5, g6, g7, g8, g9) := g in
      proj1_sig (eqb_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)
                         (g0, g1, g2, g3, g4, g5, g6, g7, g8, g9)).

Lemma eqb_correct (f g : fe25519)
  : eqb f g = ModularBaseSystem.eqb int_width f g.
Proof.
  set (f' := f); set (g' := g).
  hnf in f, g; destruct_head' prod.
  exact (proj2_sig (eqb_sig f' g')).
Qed.

Definition sqrt_sig (f : fe25519) :
  { f' : fe25519 | f' = sqrt_5mod8_opt (int_width := int_width) k_ c_ one_ sqrt_m1 f}.
Proof.
  eexists.
  cbv [sqrt_5mod8_opt int_width].
  rewrite <- pow_correct.
  apply Proper_Let_In_nd_changebody; [reflexivity|intro].
  set_evars. rewrite <-!mul_correct, <-eqb_correct. subst_evars.
  reflexivity.
Defined.

Definition sqrt (f : fe25519) : fe25519
  := Eval cbv beta iota delta [proj1_sig sqrt_sig] in proj1_sig (sqrt_sig f).

Definition sqrt_correct (f : fe25519)
  : sqrt f = sqrt_5mod8_opt k_ c_ one_ sqrt_m1 f
  := Eval cbv beta iota delta [proj2_sig sqrt_sig] in proj2_sig (sqrt_sig f).

Definition pack_simpl_sig (f : fe25519) :
  { f' | f' = pack_opt params25519 wire_widths_nonneg bits_eq f }.
Proof.
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists.
  cbv [pack_opt].
  repeat (rewrite <-convert'_opt_correct;
          cbv - [from_list_default_opt Conversion.convert']).
  repeat progress rewrite ?Z.shiftl_0_r, ?Z.shiftr_0_r, ?Z.land_0_l, ?Z.lor_0_l, ?Z.land_same_r.
  cbv [from_list_default_opt].
  reflexivity.
Defined.

Definition pack_simpl (f : fe25519) :=
  Eval cbv beta iota delta [proj1_sig pack_simpl_sig] in
    let '(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9) := f in
    proj1_sig (pack_simpl_sig (f0, f1, f2, f3, f4, f5, f6, f7, f8, f9)).

Definition pack_simpl_correct (f : fe25519)
  : pack_simpl f = pack_opt params25519 wire_widths_nonneg bits_eq f.
Proof.
  pose proof (proj2_sig (pack_simpl_sig f)).
  cbv [fe25519] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  assumption.
Qed.

Definition pack_sig (f : fe25519) :
  { f' | f' = pack_opt params25519 wire_widths_nonneg bits_eq f }.
Proof.
  eexists.
  rewrite <-pack_simpl_correct.
  rewrite <-(@app_10_correct wire_digits).
  cbv.
  reflexivity.
Defined.

Definition pack (f : fe25519) : wire_digits :=
  Eval cbv beta iota delta [proj1_sig pack_sig] in proj1_sig (pack_sig f).

Definition pack_correct (f : fe25519)
  : pack f = pack_opt params25519 wire_widths_nonneg bits_eq f
  := Eval cbv beta iota delta [proj2_sig pack_sig] in proj2_sig (pack_sig f).

Definition unpack_simpl_sig (f : wire_digits) :
  { f' | f' = unpack_opt params25519 wire_widths_nonneg bits_eq f }.
Proof.
  cbv [wire_digits] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  eexists.
  cbv [unpack_opt].
  repeat (
      rewrite <-convert'_opt_correct;
      cbv - [from_list_default_opt Conversion.convert']).
  repeat progress rewrite ?Z.shiftl_0_r, ?Z.shiftr_0_r, ?Z.land_0_l, ?Z.lor_0_l, ?Z.land_same_r.
  cbv [from_list_default_opt].
  reflexivity.
Defined.

Definition unpack_simpl (f : wire_digits) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig unpack_simpl_sig] in
    let '(f0, f1, f2, f3, f4, f5, f6, f7) := f in
    proj1_sig (unpack_simpl_sig (f0, f1, f2, f3, f4, f5, f6, f7)).

Definition unpack_simpl_correct (f : wire_digits)
  : unpack_simpl f = unpack_opt params25519 wire_widths_nonneg bits_eq f.
Proof.
  pose proof (proj2_sig (unpack_simpl_sig f)).
  cbv [wire_digits] in *.
  repeat match goal with p : (_ * Z)%type |- _ => destruct p end.
  assumption.
Qed.

Definition unpack_sig (f : wire_digits) :
  { f' | f' = unpack_opt params25519 wire_widths_nonneg bits_eq f }.
Proof.
  eexists.
  rewrite <-unpack_simpl_correct.
  rewrite <-(@app_7_correct fe25519).
  cbv.
  reflexivity.
Defined.

Definition unpack (f : wire_digits) : fe25519 :=
  Eval cbv beta iota delta [proj1_sig unpack_sig] in proj1_sig (unpack_sig f).

Definition unpack_correct (f : wire_digits)
  : unpack f = unpack_opt params25519 wire_widths_nonneg bits_eq f
  := Eval cbv beta iota delta [proj2_sig pack_sig] in proj2_sig (unpack_sig f).