aboutsummaryrefslogtreecommitdiff
path: root/src/Specific/GF25519.v
blob: 7d44addc4b1ad7834d086af7c4dca257f0ed2a54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
Require Import Galois GaloisTheory Galois.BaseSystem Galois.ModularBaseSystem.
Require Import List Util.ListUtil.
Import ListNotations.
Require Import ZArith.ZArith Zpower ZArith Znumtheory.
Require Import QArith.QArith QArith.Qround.
Require Import VerdiTactics.
Close Scope Q.

Module Base25Point5_10limbs <: BaseCoefs.
  Local Open Scope Z_scope.
  Definition base := map (fun i => two_p (Qceiling (Z_of_nat i *255 # 10))) (seq 0 10).
  Lemma base_positive : forall b, In b base -> b > 0.
  Proof.
    compute; intros; repeat break_or_hyp; intuition.
  Qed.

  Lemma b0_1 : forall x, nth_default x base 0 = 1.
  Proof.
    reflexivity.
  Qed.

  Lemma base_good :
    forall i j, (i+j < length base)%nat ->
    let b := nth_default 0 base in
    let r := (b i * b j) / b (i+j)%nat in
    b i * b j = r * b (i+j)%nat.
  Proof.
    intros.
    assert (In i (seq 0 (length base))) by nth_tac.
    assert (In j (seq 0 (length base))) by nth_tac.
    subst b; subst r; simpl in *.
    repeat break_or_hyp; try omega; vm_compute; reflexivity.
  Qed.
End Base25Point5_10limbs.

Module Modulus25519 <: Modulus.
  Local Open Scope Z_scope.
  Definition two_255_19 := two_p 255 - 19.
  Lemma two_255_19_prime : prime two_255_19. Admitted.
  Definition prime25519 := exist _ two_255_19 two_255_19_prime.
  Definition modulus := prime25519.
End Modulus25519.

Module GF25519Base25Point5Params <: PseudoMersenneBaseParams Base25Point5_10limbs Modulus25519.
  Import Base25Point5_10limbs.
  Import Modulus25519.
  Local Open Scope Z_scope.
  (* TODO: do we actually want B and M "up there" in the type parameters? I was
  * imagining writing something like "Paramter Module M : Modulus". *)

  Definition k := 255.
  Definition c := 19.
  Lemma modulus_pseudomersenne :
    primeToZ modulus = 2^k - c.
  Proof.
    reflexivity.
  Qed.

  Lemma base_matches_modulus :
    forall i j,
    (i   <  length base)%nat ->
    (j   <  length base)%nat ->
    (i+j >= length base)%nat ->
    let b := nth_default 0 base in
    let r := (b i * b j)  /   (2^k * b (i+j-length base)%nat) in
              b i * b j = r * (2^k * b (i+j-length base)%nat).
  Proof.
    intros.
    assert (In i (seq 0 (length base))) by nth_tac.
    assert (In j (seq 0 (length base))) by nth_tac.
    subst b; subst r; simpl in *.
    repeat break_or_hyp; try omega; vm_compute; reflexivity.
  Qed.

  Lemma base_succ : forall i, ((S i) < length base)%nat -> 
    let b := nth_default 0 base in
    b (S i) mod b i = 0.
  Proof.
    intros.
    assert (In i (seq 0 (length base))) by nth_tac.
    assert (In (S i) (seq 0 (length base))) by nth_tac.
    subst b; simpl in *.
    repeat break_or_hyp; try omega; vm_compute; reflexivity.
  Qed.

  Lemma base_tail_matches_modulus:
    2^k mod nth_default 0 base (pred (length base)) = 0.
  Proof.
    nth_tac.
  Qed.

  Lemma b0_1 : forall x, nth_default x base 0 = 1.
  Proof.
    reflexivity.
  Qed.

  Lemma k_nonneg : 0 <= k.
  Proof.
    rewrite Zle_is_le_bool; reflexivity.
  Qed.
End GF25519Base25Point5Params.

Module GF25519Base25Point5 := GFPseudoMersenneBase Base25Point5_10limbs Modulus25519 GF25519Base25Point5Params.

Ltac expand_list f :=
  assert ((length f < 100)%nat) as _ by (simpl length in *; omega);
    repeat progress (
    let n := fresh f in
    destruct f as [ | n ];
    try solve [simpl length in *; try discriminate]).

(* TODO: move to ListUtil *)
Lemma cons_eq_head : forall {T} (x y:T) xs ys, x::xs = y::ys -> x=y.
Proof.
  intros; solve_by_inversion.
Qed.
Lemma cons_eq_tail : forall {T} (x y:T) xs ys, x::xs = y::ys -> xs=ys.
Proof.
  intros; solve_by_inversion.
Qed.

Ltac expand_list_equalities := repeat match goal with
  | [H: (?x::?xs = ?y::?ys) |- _ ] =>
      let eq_head := fresh "Heq" x in
      assert (x = y) as eq_head by (eauto using cons_eq_head);
      assert (xs = ys) by (eauto using cons_eq_tail);
      clear H
  | [H:?x = ?x|-_] => clear H
end.

Section GF25519Base25Point5Formula.
  Local Open Scope Z_scope.
  Import GF25519Base25Point5.
  Import GF.

  Lemma GF25519Base25Point5_mul_reduce_formula :
    forall f g
      f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 
      g0 g1 g2 g3 g4 g5 g6 g7 g8 g9
    (Hf: rep [f0;f1;f2;f3;f4;f5;f6;f7;f8;f9] f)
    (Hg: rep [g0;g1;g2;g3;g4;g5;g6;g7;g8;g9] g),
      let h0 := (f0*g0 + 38*f9*g1 + 19*f8*g2 + 38*f7*g3 + 19*f6*g4 + 38*f5*g5 + 19*f4*g6 + 38*f3*g7 + 19*f2*g8 + 38*f1*g9) in
      let h1 := (f1*g0 + f0*g1    + 19*f9*g2 + 19*f8*g3 + 19*f7*g4 + 19*f6*g5 + 19*f5*g6 + 19*f4*g7 + 19*f3*g8 + 19*f2*g9) in
      let h2 := (f2*g0 + 2*f1*g1  + f0*g2    + 38*f9*g3 + 19*f8*g4 + 38*f7*g5 + 19*f6*g6 + 38*f5*g7 + 19*f4*g8 + 38*f3*g9) in
      let h3 := (f3*g0 + f2*g1    + f1*g2    + f0*g3    + 19*f9*g4 + 19*f8*g5 + 19*f7*g6 + 19*f6*g7 + 19*f5*g8 + 19*f4*g9) in
      let h4 := (f4*g0 + 2*f3*g1  + f2*g2    + 2*f1*g3  + f0*g4    + 38*f9*g5 + 19*f8*g6 + 38*f7*g7 + 19*f6*g8 + 38*f5*g9) in
      let h5 := (f5*g0 + f4*g1    + f3*g2    + f2*g3    + f1*g4    + f0*g5    + 19*f9*g6 + 19*f8*g7 + 19*f7*g8 + 19*f6*g9) in
      let h6 := (f6*g0 + 2*f5*g1  + f4*g2    + 2*f3*g3  + f2*g4    + 2*f1*g5  + f0*g6    + 38*f9*g7 + 19*f8*g8 + 38*f7*g9) in
      let h7 := (f7*g0 + f6*g1    + f5*g2    + f4*g3    + f3*g4    + f2*g5    + f1*g6    + f0*g7    + 19*f9*g8 + 19*f8*g9) in
      let h8 := (f8*g0 + 2*f7*g1  + f6*g2    + 2*f5*g3  + f4*g4    + 2*f3*g5  + f2*g6    + 2*f1*g7  + f0*g8    + 38*f9*g9) in
      let h9 := (f9*g0 + f8*g1    + f7*g2    + f6*g3    + f5*g4    + f4*g5    + f3*g6    + f2*g7    + f1*g8    + f0*g9)    in
      let h0c := Z.land h0 67108863 in
      let h1c := (Z.shiftr h0 26 + h1)%Z in
      let h2c := (Z.shiftr h1c 25 + h2)%Z in
      let h3c := (Z.shiftr h2c 26 + h3)%Z in
      let h4c := (Z.shiftr h3c 25 + h4)%Z in
      let h5c := (Z.shiftr h4c 26 + h5)%Z in
      let h6c := (Z.shiftr h5c 25 + h6)%Z in
      let h7c := (Z.shiftr h6c 26 + h7)%Z in
      let h8c := (Z.shiftr h7c 25 + h8)%Z in
      let h9c := (Z.shiftr h8c 26 + h9)%Z in
      let r0' := (19 * Z.shiftr h9c 25 + h0c)%Z in
      let r0 := Z.land r0' 67108863 in
      let r1' := Z.land h1c 33554431 in
      let r1 := (Z.shiftr r0' 26 + r1')%Z in
      let r2 := Z.land h2c 67108863 in
      let r3 := Z.land h3c 33554431 in
      let r4 := Z.land h4c 67108863 in
      let r5 := Z.land h5c 33554431 in
      let r6 := Z.land h6c 67108863 in
      let r8 := Z.land h8c 67108863 in
      let r7 := Z.land h7c 33554431 in
      let r9 := Z.land h9c 33554431 in
    rep [r0;r1;r2;r3;r4;r5;r6;r7;r8;r9] (f*g)%GF.
  Proof.
    intros.
    pose proof (mul_rep _ _  _ _ Hf Hg) as HmulRef.
    remember (GF25519Base25Point5.mul [f0;f1;f2;f3;f4;f5;f6;f7;f8;f9] [g0;g1;g2;g3;g4;g5;g6;g7;g8;g9]) as h.
    unfold
      GF25519Base25Point5.mul,
      GF25519Base25Point5.B.add,
      GF25519Base25Point5.E.mul,
      GF25519Base25Point5.E.mul',
      GF25519Base25Point5.E.mul_bi,
      GF25519Base25Point5.E.mul_bi',
      GF25519Base25Point5.E.mul_each,
      GF25519Base25Point5.E.add,
      GF25519Base25Point5.B.digits,
      GF25519Base25Point5.E.digits,
      Base25Point5_10limbs.base,
      GF25519Base25Point5.E.crosscoef,
      nth_default
    in Heqh; simpl in Heqh.

    unfold
      two_power_pos,
      shift_pos
    in Heqh; simpl in Heqh.

    (* evaluate row-column crossing coefficients for variable base multiplication *)
    (* unfoldZ.div in Heqh; simpl in Heqh. *) (* THIS TAKES TOO LONG *)
    repeat rewrite Z_div_same_full in Heqh by (abstract (apply Zeq_bool_neq; reflexivity)).
    repeat match goal with [ Heqh : context[ (?a / ?b)%Z ]  |- _ ] =>
      replace (a / b)%Z with 2%Z in Heqh by
        (abstract (symmetry; erewrite <- Z.div_unique_exact; try apply Zeq_bool_neq; reflexivity))
    end.

    Hint Rewrite
      Z.mul_0_l
      Z.mul_0_r
      Z.mul_1_l
      Z.mul_1_r
      Z.add_0_l
      Z.add_0_r
      : Z_identities.
    autorewrite with Z_identities in Heqh.

    (* inline explicit formulas for modular reduction *)
    cbv beta iota zeta delta [GF25519Base25Point5.reduce Base25Point5_10limbs.base] in Heqh.
    remember GF25519Base25Point5Params.c as c in Heqh; unfold GF25519Base25Point5Params.c in Heqc.
    simpl in Heqh.

    (* prettify resulting modular multiplication expression *)
    repeat rewrite (Z.mul_add_distr_l c) in Heqh.
    repeat rewrite (Z.mul_assoc _ _ 2) in Heqh.
    repeat rewrite (Z.mul_comm _ 2) in Heqh.
    repeat rewrite (Z.mul_assoc 2 c) in Heqh.
    remember (2 * c)%Z as TwoC in Heqh; subst c; simpl in HeqTwoC; subst TwoC. (* perform operations on constants *)
    repeat rewrite Z.add_assoc in Heqh.
    repeat rewrite Z.mul_assoc in Heqh.
    assert (Hhl: length h = 10%nat) by (subst h; reflexivity); expand_list h; clear Hhl.
    expand_list_equalities.
    (* pretty-print: sh -c "tr -d '\n' | tr 'Z' '\n' | tr -d \% | sed 's:\s\s*\*\s\s*:\*:g' | column -o' ' -t" *)
    (* output:
      h0 = (f0*g0 + 38*f9*g1 + 19*f8*g2 + 38*f7*g3 + 19*f6*g4 + 38*f5*g5 + 19*f4*g6 + 38*f3*g7 + 19*f2*g8 + 38*f1*g9)
      h1 = (f1*g0 + f0*g1    + 19*f9*g2 + 19*f8*g3 + 19*f7*g4 + 19*f6*g5 + 19*f5*g6 + 19*f4*g7 + 19*f3*g8 + 19*f2*g9)
      h2 = (f2*g0 + 2*f1*g1  + f0*g2    + 38*f9*g3 + 19*f8*g4 + 38*f7*g5 + 19*f6*g6 + 38*f5*g7 + 19*f4*g8 + 38*f3*g9)
      h3 = (f3*g0 + f2*g1    + f1*g2    + f0*g3    + 19*f9*g4 + 19*f8*g5 + 19*f7*g6 + 19*f6*g7 + 19*f5*g8 + 19*f4*g9)
      h4 = (f4*g0 + 2*f3*g1  + f2*g2    + 2*f1*g3  + f0*g4    + 38*f9*g5 + 19*f8*g6 + 38*f7*g7 + 19*f6*g8 + 38*f5*g9)
      h5 = (f5*g0 + f4*g1    + f3*g2    + f2*g3    + f1*g4    + f0*g5    + 19*f9*g6 + 19*f8*g7 + 19*f7*g8 + 19*f6*g9)
      h6 = (f6*g0 + 2*f5*g1  + f4*g2    + 2*f3*g3  + f2*g4    + 2*f1*g5  + f0*g6    + 38*f9*g7 + 19*f8*g8 + 38*f7*g9)
      h7 = (f7*g0 + f6*g1    + f5*g2    + f4*g3    + f3*g4    + f2*g5    + f1*g6    + f0*g7    + 19*f9*g8 + 19*f8*g9)
      h8 = (f8*g0 + 2*f7*g1  + f6*g2    + 2*f5*g3  + f4*g4    + 2*f3*g5  + f2*g6    + 2*f1*g7  + f0*g8    + 38*f9*g9)
      h9 = (f9*g0 + f8*g1    + f7*g2    + f6*g3    + f5*g4    + f4*g5    + f3*g6    + f2*g7    + f1*g8    + f0*g9)
    *)
    
    (* prove equivalence of multiplication to the stated *)
    assert (rep [h0; h1; h2; h3; h4; h5; h6; h7; h8; h9] (f * g)%GF) as Hh. {
      subst h0. subst h1. subst h2. subst h3. subst h4. subst h5. subst h6. subst h7. subst h8. subst h9.
      repeat match goal with [H: _ = _ |- _ ] =>
          rewrite <- H; clear H
      end.
      assumption.
    }

    (* --- carry phase --- *)
    remember (rev [0;1;2;3;4;5;6;7;8;9;0])%nat as is; simpl in Heqis.
    destruct (fun pf pf2 => carry_sequence_rep is _ _ pf pf2 Hh). {
      subst is. clear. intros. simpl in *. firstorder.
    } {
      reflexivity.
    }
    remember (carry_sequence is [h0; h1; h2; h3; h4; h5; h6; h7; h8; h9]) as r; subst is.

    (* unroll the carry loop, create a separate variable for each of the 10 list elements *)
    cbv [GF25519Base25Point5.carry_sequence fold_right rev app] in Heqr.
    repeat match goal with
    | [H1: ?a = ?b, H2: ?b = ?c |- _ ] => subst a
    | [H: context[GF25519Base25Point5.carry ?i (?x::?xs)] |- _ ] =>
        let cr := fresh "cr" in
        remember (GF25519Base25Point5.carry i (x::xs)) as cr;
        match goal with [ Heq : cr = ?crdef |- _ ] =>
            cbv [GF25519Base25Point5.carry GF25519Base25Point5.carry_simple GF25519Base25Point5.carry_and_reduce] in Heq;
            simpl eq_nat_dec in Heq; cbv iota beta in Heq;
            cbv [set_nth nth_default nth_error value GF25519Base25Point5.add_to_nth] in Heq;
            let Heql := fresh "Heql" in
              assert (length cr = length crdef) as Heql by (subst cr; reflexivity);
              simpl length in Heql; expand_list cr; clear Heql;
            expand_list_equalities
        end
    end.

    (* compute the human-meaningful froms of constants used during carrying *)
    cbv [GF25519Base25Point5.cap Base25Point5_10limbs.base GF25519Base25Point5Params.k] in *.
    simpl eq_nat_dec in *; cbv iota in *.
    repeat match goal with
    | [H: _ |- _ ] =>
      rewrite (map_nth_default _ _ _ _ 0%nat 0%Z) in H by (abstract (clear; rewrite seq_length; firstorder))
    end.
    simpl two_p in *.
    repeat rewrite two_power_pos_equiv in *.
    repeat rewrite <- Z.pow_sub_r in * by (abstract (clear; firstorder)).
    simpl Z.sub in *;
    rewrite Zdiv_1_r in *.

    (* replace division and Z.modulo with bit operations *)
    remember (2 ^ 25)%Z as t25 in *.
    remember (2 ^ 26)%Z as t26 in *.
    repeat match goal with [H1: ?a = ?b, H2: ?b = ?c |- _ ] => subst a end.
    subst t25. subst t26.
    rewrite <- Z.land_ones in * by (abstract (clear; firstorder)).
    rewrite <- Z.shiftr_div_pow2 in * by (abstract (clear; firstorder)).

    (* evaluate the constant arguments to bit operations *)
    remember (Z.ones 25) as m25 in *. compute in Heqm25. subst m25.
    remember (Z.ones 26) as m26 in *. compute in Heqm26. subst m26.
    unfold GF25519Base25Point5Params.c in *.

    replace ([r0; r1; r2; r3; r4; r5; r6; r7; r8; r9]) with r; unfold rep; auto; subst r.

    Ltac rsubstBoth := repeat (match goal with [ |- ?a = ?b] =>  subst a; subst b; repeat progress f_equal || reflexivity end).
    Ltac t := f_equal; [abstract rsubstBoth|try t].
    t.
    f_equal.
    rsubstBoth.
  Qed.
End GF25519Base25Point5Formula.