aboutsummaryrefslogtreecommitdiff
path: root/src/Specific/Framework/bench/gmpvar.c
blob: 476ec1d925c59b7e9801bde1123ff1d7ef41a414 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <gmp.h>

// modulus, encoded as big-endian bytes
#ifndef modulus_array
#define modulus_array {0x7f,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xed}
#endif

#ifndef a_minus_two_over_four_array
#define a_minus_two_over_four_array {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0xdb,0x41}
#endif

#ifdef modulus_limbs
#undef modulus_limbs // We currently recompute this; TODO(andreser): is this the right thing to do?
#endif

static const unsigned char modulus[] = modulus_array;
static const unsigned char a_minus_two_over_four[] = a_minus_two_over_four_array;
#define modulus_bytes (sizeof(modulus))
#define modulus_limbs ((8*sizeof(modulus) + GMP_LIMB_BITS-1)/GMP_LIMB_BITS)


static void fe_print(mp_limb_t* fe) {
	printf("0x");
	for (size_t i = modulus_limbs-1; i > 0; --i) { printf("%016lx", fe[i]); }
	printf("%016lx", fe[0]);
}

static void crypto_scalarmult(uint8_t *out, const uint8_t *secret, size_t secretbits, const uint8_t *point) {
	// curve constants
	mp_limb_t m[modulus_limbs+1];
	mp_limb_t a24[modulus_limbs+1];
	assert(mpn_set_str(m, modulus, modulus_bytes, 256) == (mp_size_t)modulus_limbs);
	assert(mpn_set_str(a24, a_minus_two_over_four, sizeof(a_minus_two_over_four), 256) <= (mp_size_t)modulus_limbs);

	// allocate scratch space for internal use by GMP.
	// as GMP _itch are documented as functions, not macros, we use a
	// variable-size stack allocation. hopefully the compiler will inline _itch
	// functions and figure out the correct stack frame size statically through
	// constant propagation.
	mp_size_t invscratch_sz = mpn_sec_invert_itch(modulus_limbs);
	mp_size_t scratch_sz = invscratch_sz;
	          scratch_sz = (modulus_limbs > scratch_sz) ? modulus_limbs : scratch_sz;
	mp_limb_t scratch[scratch_sz];
	for (size_t i = 0; i<scratch_sz; ++i) { scratch[i] = 0; }

	// allocate scratch space for use by the field operation macros.
	mp_limb_t _product_tmp[modulus_limbs+modulus_limbs];

	#define fe_mul(out, x, y) do { \
		mpn_mul(_product_tmp, x, modulus_limbs, y, modulus_limbs); \
		mpn_tdiv_qr(scratch, _product_tmp, 0, _product_tmp, modulus_limbs+modulus_limbs, m, modulus_limbs); \
		for (size_t i = 0; i<modulus_limbs; i++) { out[i] = _product_tmp[i]; } \
	} while (0)

	#define fe_sqr(out, x) do { \
		mpn_sqr(_product_tmp, x, modulus_limbs); \
		mpn_tdiv_qr(scratch, _product_tmp, 0, _product_tmp, modulus_limbs+modulus_limbs, m, modulus_limbs); \
		for (size_t i = 0; i<modulus_limbs; i++) { out[i] = _product_tmp[i]; } \
	} while (0)

	#define fe_add(out, x, y) do { \
		if (mpn_add_n(out, x, y, modulus_limbs)) { \
			mpn_sub_n(out, out, m, modulus_limbs); \
		} \
	} while (0)

	#define fe_sub(out, x, y) do { \
		if (mpn_sub_n(out, x, y, modulus_limbs)) { \
			mpn_add_n(out, out, m, modulus_limbs); \
		} \
	} while (0)

	#define fe_inv(out, x) do { \
		for (size_t i = 0; i<modulus_limbs; i++) { _product_tmp[i] = x[i]; } \
		mp_size_t invertible = mpn_sec_invert(out, _product_tmp, m, modulus_limbs, 2*modulus_limbs*GMP_NUMB_BITS, scratch); \
		mpn_cnd_sub_n(1-invertible, out, out, out, modulus_limbs); \
	} while (0)

	mp_limb_t a[modulus_limbs] = {0}; mp_limb_t *nqpqx = a;
	mp_limb_t b[modulus_limbs] = {1}; mp_limb_t *nqpqz = b;
	mp_limb_t c[modulus_limbs] ={1}; mp_limb_t *nqx = c;
	mp_limb_t d[modulus_limbs] = {0}; mp_limb_t *nqz = d;
	mp_limb_t e[modulus_limbs] = {0}; mp_limb_t *nqpqx2 = e;
	mp_limb_t f[modulus_limbs] = {1}; mp_limb_t *nqpqz2 = f;
	mp_limb_t g[modulus_limbs] = {0}; mp_limb_t *nqx2 = g;
	mp_limb_t h[modulus_limbs] = {1}; mp_limb_t *nqz2 = h;
	mp_limb_t *t;

	uint8_t revpoint[modulus_bytes];
	for (size_t i = 0; i<modulus_bytes; i++) { revpoint[i] = point[modulus_bytes-1-i]; }
	for (size_t i = 0; i<modulus_limbs; i++) { nqpqx[i] = 0; }
	assert(mpn_set_str(nqpqx, revpoint, modulus_bytes, 256) <= (mp_size_t)modulus_limbs);

	mp_limb_t qmqp[modulus_limbs];
	for (size_t i = 0; i<modulus_limbs; i++) { qmqp[i] = nqpqx[i]; }

	for (size_t i = secretbits-1; i < secretbits; --i) {
		mp_limb_t bit = (secret[i/8] >> (i%8))&1;
		// printf("%01d ", bit);
		// { mp_limb_t pr[modulus_limbs]; fe_inv(pr, nqz); fe_mul(pr, pr, nqx); fe_print(pr); }
		// printf(" ");
		// { mp_limb_t pr[modulus_limbs]; fe_inv(pr, nqpqz); fe_mul(pr, pr, nqpqx); fe_print(pr); }
		// printf("\n");

		mpn_cnd_swap(bit, nqx, nqpqx, modulus_limbs);
		mpn_cnd_swap(bit, nqz, nqpqz, modulus_limbs);

		mp_limb_t *x2 = nqx2;
		mp_limb_t *z2 = nqz2;
		mp_limb_t *x3 = nqpqx2;
		mp_limb_t *z3 = nqpqz2;
		mp_limb_t *x = nqx;
		mp_limb_t *z = nqz;
		mp_limb_t *xprime = nqpqx;
		mp_limb_t *zprime = nqpqz;
		// fmonty(mp_limb_t *x2, mp_limb_t 0*z2, /* output 2Q */
		//        mp_limb_t *x3, mp_limb_t *z3, /* output Q + Q' */
		//        mp_limb_t *x, mp_limb_t *z,   /* input Q */
		//        mp_limb_t *xprime, mp_limb_t *zprime, /* input Q' */
		//        const mp_limb_t *qmqp /* input Q - Q' */) {

		mp_limb_t origx[modulus_limbs], origxprime[modulus_limbs], zzz[modulus_limbs], xx[modulus_limbs], zz[modulus_limbs], xxprime[modulus_limbs], zzprime[modulus_limbs], zzzprime[modulus_limbs];

		for (size_t i = 0; i<modulus_limbs; i++) { origx[i] = x[i]; }
		fe_add(x, x, z);
		fe_sub(z, origx, z);

		for (size_t i = 0; i<modulus_limbs; i++) { origxprime[i] = xprime[i]; }
		fe_add(xprime, xprime, zprime);
		fe_sub(zprime, origxprime, zprime);
		fe_mul(xxprime, xprime, z);
		fe_mul(zzprime, x, zprime);
		for (size_t i = 0; i<modulus_limbs; i++) { origxprime[i] = xxprime[i]; }
		fe_add(xxprime, xxprime, zzprime);
		fe_sub(zzprime, origxprime, zzprime);
		fe_sqr(x3, xxprime);
		fe_sqr(zzzprime, zzprime);
		fe_mul(z3, zzzprime, qmqp);

		fe_sqr(xx, x);
		fe_sqr(zz, z);
		fe_mul(x2, xx, zz);
		fe_sub(zz, xx, zz);
		fe_mul(zzz, zz, a24);
		fe_add(zzz, zzz, xx);
		fe_mul(z2, zz, zzz);

		// } fmonty

		mpn_cnd_swap(bit, nqx2, nqpqx2, modulus_limbs);
		mpn_cnd_swap(bit, nqz2, nqpqz2, modulus_limbs);

		t = nqx;
		nqx = nqx2;
		nqx2 = t;
		t = nqz;
		nqz = nqz2;
		nqz2 = t;
		t = nqpqx;
		nqpqx = nqpqx2;
		nqpqx2 = t;
		t = nqpqz;
		nqpqz = nqpqz2;
		nqpqz2 = t;

	}

	for (size_t i = 0; i < modulus_bytes; i++) { out[i] = 0; }
	for (size_t i = 0; i < 8*modulus_bytes; i++) {
		mp_limb_t bit = (nqx[i/GMP_LIMB_BITS] >> (i%GMP_LIMB_BITS))&1;
		out [i/8] |= bit<<(i%8);
	}
	for (size_t i = 0; i < 8*modulus_bytes; i++) {
		mp_limb_t bit = (nqz[i/GMP_LIMB_BITS] >> (i%GMP_LIMB_BITS))&1;
		out [i/8] ^= bit<<(i%8);
	}
}


int main() {
	// {
	// 	uint8_t out[sizeof(modulus)] = {0};
	// 	uint8_t point[sizeof(modulus)] = {9};
	// 	uint8_t secret[sizeof(modulus)] = {1};
	// 	crypto_scalarmult(out, point, secret, 256);
	// 	printf("0x"); for (int i = 31; i>=0; --i) { printf("%02x", out[i]); }; printf("\n");
	// }

	// {
	// 	const uint8_t expected[32] = {0x89, 0x16, 0x1f, 0xde, 0x88, 0x7b, 0x2b, 0x53, 0xde, 0x54, 0x9a, 0xf4, 0x83, 0x94, 0x01, 0x06, 0xec, 0xc1, 0x14, 0xd6, 0x98, 0x2d, 0xaa, 0x98, 0x25, 0x6d, 0xe2, 0x3b, 0xdf, 0x77, 0x66, 0x1a};
	// 	const uint8_t basepoint[32] = {9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};


	// 	uint8_t a[32] = {0}, b[32] = {0};
	// 	uint8_t* in = a;
	// 	uint8_t* out = b;
	// 	a[0] = 1;

	// 	for (int i = 0; i < 200; i++) {
	// 		in[0] &= 248;
	// 		in[31] &= 127;
	// 		in[31] |= 64;

	// 		crypto_scalarmult(out, in, 256, basepoint);
	// 		uint8_t* t = out;
	// 		out = in;
	// 		in = t;
	// 	}

	// 	for (int i = 0; i < 32; i++) {
	// 		if (in[i] != expected[i]) {
	// 			return (i+1);
	// 		}
	// 	}
	// 	return 0;
	// }
  uint8_t secret[32];
  uint8_t point[modulus_bytes];

  for (int i = 0; i < modulus_bytes; i++) { point[modulus_bytes-i] = i; }

  for (int i = 0; i < 1000; i++) {
      for (int j = 0; j<modulus_bytes; j++) {
          secret[j%32] ^= point[j];
      }
      crypto_scalarmult(point, secret, 32*8, point);
  }
  __asm__ __volatile__("" :: "m" (point)); // do not optimize buf away
  return 0;
}