aboutsummaryrefslogtreecommitdiff
path: root/src/Specific/Framework/ArithmeticSynthesis/Montgomery.v
blob: ba3340f328cc30ca24f7bf7bf046fb137f879796 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
Require Import Coq.micromega.Lia.
Require Import Crypto.Arithmetic.MontgomeryReduction.WordByWord.Definition.
Require Import Crypto.Arithmetic.MontgomeryReduction.WordByWord.Proofs.
Require Import Crypto.Arithmetic.Core. Import B.
Require Crypto.Arithmetic.Saturated.MontgomeryAPI.
Require Import Crypto.Arithmetic.Saturated.UniformWeight.
Require Import Crypto.Util.Sigma.Lift.
Require Import Coq.ZArith.BinInt.
Require Import Coq.PArith.BinPos.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.ZUtil.ModInv.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Arithmetic.Saturated.UniformWeightInstances.
Require Import Crypto.Specific.Framework.ArithmeticSynthesis.HelperTactics.
Require Import Crypto.Util.Tactics.CacheTerm.

Local Open Scope Z_scope.
Local Infix "^" := Tuple.tuple : type_scope.

Local Definition sig_by_eq {A P} (x : { a : A | P a }) (a : A) (H : a = proj1_sig x)
  : { a : A | P a }.
Proof.
  exists a; subst; exact (proj2_sig x).
Defined.

Section with_args.
  Context (wt : nat -> Z)
          (r : positive)
          (sz : nat)
          (m : positive)
          (m_enc : Z^sz)
          (r' : Z)
          (r'_correct : ((Z.pos r * r') mod (Z.pos m) = 1)%Z)
          (m' : Z)
          (m'_correct : ((Z.pos m * m') mod (Z.pos r) = (-1) mod Z.pos r)%Z)
          (m_enc_correct_montgomery : Z.pos m = MontgomeryAPI.eval (n:=sz) (Z.pos r) m_enc)
          (r'_pow_correct : ((r' ^ Z.of_nat sz * Z.pos r ^ Z.of_nat sz) mod MontgomeryAPI.eval (n:=sz) (Z.pos r) m_enc = 1)%Z)
          (* computable *)
          (r_big : Z.pos r > 1)
          (m_big : 1 < Z.pos m)
          (m_enc_small : small (Z.pos r) m_enc)
          (map_m_enc : Tuple.map (Z.land (Z.pos r - 1)) m_enc = m_enc).

  Local Ltac t_fin :=
    repeat match goal with
           | _ => assumption
           | [ |- ?x = ?x ] => reflexivity
           | [ |- and _ _ ] => split
           | [ |- (0 <= MontgomeryAPI.eval (Z.pos r) _)%Z ] => apply MontgomeryAPI.eval_small
           | _ => rewrite <- !m_enc_correct_montgomery
           | _ => rewrite !r'_correct
           | _ => rewrite !Z.mod_1_l by assumption; reflexivity
           | _ => rewrite !(Z.mul_comm m' (Z.pos m))
           | _ => lia
           end.


  Local Definition mul'_gen
    : { f:Z^sz -> Z^sz -> Z^sz
      | forall (A B : Z^sz),
          small (Z.pos r) A -> small (Z.pos r) B ->
          let eval := MontgomeryAPI.eval (Z.pos r) in
          (small (Z.pos r) (f A B)
           /\ (eval B < eval m_enc -> 0 <= eval (f A B) < eval m_enc)
           /\ (eval (f A B) mod Z.pos m
               = (eval A * eval B * r'^(Z.of_nat sz)) mod Z.pos m))%Z
      }.
  Proof.
    exists (fun A B => redc (r:=r)(R_numlimbs:=sz) m_enc A B m').
    abstract (
        intros;
        split; [ | split ];
        [ apply small_redc with (ri:=r') | apply redc_bound_N with (ri:=r') | rewrite !m_enc_correct_montgomery; apply redc_mod_N ];
        t_fin
      ).
  Defined.

  Import ModularArithmetic.

  Definition montgomery_to_F_gen (v : Z) : F m
    := (F.of_Z m v * F.of_Z m (r'^Z.of_nat sz)%Z)%F.

  Local Definition mul_ext_gen
    : { f:Z^sz -> Z^sz -> Z^sz
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        (forall (A : Z^sz) (_ : small (Z.pos r) A)
                (B : Z^sz) (_ : small (Z.pos r) B),
            montgomery_to_F_gen (eval (f A B))
            = (montgomery_to_F_gen (eval A) * montgomery_to_F_gen (eval B))%F)
        /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                   (B : Z^sz) (_ : small (Z.pos r) B),
               (eval B < eval m_enc -> 0 <= eval (f A B) < eval m_enc)%Z) }.
  Proof.
    exists (proj1_sig mul'_gen).
    abstract (
        split; intros A Asm B Bsm;
        pose proof (proj2_sig mul'_gen A B Asm Bsm) as H;
        cbv zeta in *;
        try solve [ destruct_head'_and; assumption ];
        rewrite ModularArithmeticTheorems.F.eq_of_Z_iff in H;
        unfold montgomery_to_F_gen;
        destruct H as [H1 [H2 H3]];
        rewrite H3;
        rewrite <- !ModularArithmeticTheorems.F.of_Z_mul;
        f_equal; nia
      ).
  Defined.

  Local Definition add_ext_gen
    : { f:Z^sz -> Z^sz -> Z^sz
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        ((forall (A : Z^sz) (_ : small (Z.pos r) A)
                 (B : Z^sz) (_ : small (Z.pos r) B),
             (eval A < eval m_enc
              -> eval B < eval m_enc
              -> montgomery_to_F_gen (eval (f A B))
                 = (montgomery_to_F_gen (eval A) + montgomery_to_F_gen (eval B))%F))
         /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                    (B : Z^sz) (_ : small (Z.pos r) B),
                (eval A < eval m_enc
                 -> eval B < eval m_enc
                 -> 0 <= eval (f A B) < eval m_enc)))%Z }.
  Proof.
    generalize m_big.
    exists (fun A B => add (r:=r)(R_numlimbs:=sz) m_enc A B).
    abstract (
        split; intros;
        unfold montgomery_to_F_gen; rewrite <- ?ModularArithmeticTheorems.F.of_Z_mul, <- ?ModularArithmeticTheorems.F.of_Z_add;
        rewrite <- ?Z.mul_add_distr_r;
        [ rewrite <- ModularArithmeticTheorems.F.eq_of_Z_iff, m_enc_correct_montgomery; push_Zmod; rewrite eval_add_mod_N; pull_Zmod
        | apply add_bound ];
        t_fin
      ).
  Defined.

  Local Definition sub_ext_gen
    : { f:Z^sz -> Z^sz -> Z^sz
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        ((forall (A : Z^sz) (_ : small (Z.pos r) A)
                 (B : Z^sz) (_ : small (Z.pos r) B),
             (eval A < eval m_enc
              -> eval B < eval m_enc
              -> montgomery_to_F_gen (eval (f A B))
                 = (montgomery_to_F_gen (eval A) - montgomery_to_F_gen (eval B))%F))
         /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                    (B : Z^sz) (_ : small (Z.pos r) B),
                (eval A < eval m_enc
                 -> eval B < eval m_enc
                 -> 0 <= eval (f A B) < eval m_enc)))%Z }.
  Proof.
    exists (fun A B => sub (r:=r) (R_numlimbs:=sz) m_enc A B).
    abstract (
        split; intros;
        unfold montgomery_to_F_gen; rewrite <- ?ModularArithmeticTheorems.F.of_Z_mul, <- ?ModularArithmeticTheorems.F.of_Z_sub;
        rewrite <- ?Z.mul_sub_distr_r;
        [ rewrite <- ModularArithmeticTheorems.F.eq_of_Z_iff, m_enc_correct_montgomery; push_Zmod; rewrite eval_sub_mod_N; pull_Zmod
        | apply sub_bound ];
        t_fin
      ).
  Defined.

  Local Definition opp_ext_gen
    : { f:Z^sz -> Z^sz
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        ((forall (A : Z^sz) (_ : small (Z.pos r) A),
             (eval A < eval m_enc
              -> montgomery_to_F_gen (eval (f A))
                 = (F.opp (montgomery_to_F_gen (eval A)))%F))
         /\ (forall (A : Z^sz) (_ : small (Z.pos r) A),
                (eval A < eval m_enc
                 -> 0 <= eval (f A) < eval m_enc)))%Z }.
  Proof.
    exists (fun A => opp (r:=r) (R_numlimbs:=sz) m_enc A).
    abstract (
        split; intros;
        unfold montgomery_to_F_gen; rewrite <- ?ModularArithmeticTheorems.F.of_Z_mul, <- ?F_of_Z_opp;
        rewrite <- ?Z.mul_opp_l;
        [ rewrite <- ModularArithmeticTheorems.F.eq_of_Z_iff, m_enc_correct_montgomery; push_Zmod; rewrite eval_opp_mod_N; pull_Zmod
        | apply opp_bound ];
        t_fin
      ).
  Defined.

  (* This is kind-of stupid, but we add it for consistency *)
  Local Definition carry_ext_gen
    : { f:Z^sz -> Z^sz
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        ((forall (A : Z^sz) (_ : small (Z.pos r) A),
             (eval A < eval m_enc
              -> montgomery_to_F_gen (eval (f A))
                 = montgomery_to_F_gen (eval A))))
         /\ (forall (A : Z^sz) (_ : small (Z.pos r) A),
                (eval A < eval m_enc
                 -> 0 <= eval (f A) < eval m_enc))%Z }.
  Proof.
    exists (fun A => A).
    abstract (
        split; eauto; split; auto;
        apply MontgomeryAPI.eval_small; auto; lia
      ).
  Defined.

  Local Definition nonzero_ext_gen
    : { f:Z^sz -> Z
      | let eval := MontgomeryAPI.eval (Z.pos r) in
        forall (A : Z^sz) (_ : small (Z.pos r) A),
          (eval A < eval m_enc
           -> f A = 0 <-> (montgomery_to_F_gen (eval A) = F.of_Z m 0))%Z }.
  Proof.
    generalize m_big;
    exists (fun A => nonzero (R_numlimbs:=sz) A).
    abstract (
        intros eval A H **; rewrite (@eval_nonzero r) by (eassumption || reflexivity);
        subst eval;
        unfold montgomery_to_F_gen, uweight in *; rewrite <- ?ModularArithmeticTheorems.F.of_Z_mul;
        rewrite <- ModularArithmeticTheorems.F.eq_of_Z_iff, m_enc_correct_montgomery;
        let H := fresh in
        split; intro H;
        [ rewrite H; autorewrite with zsimplify_const; reflexivity
        | cut ((MontgomeryAPI.eval (Z.pos r) A * (r' ^ Z.of_nat sz * Z.pos r ^ Z.of_nat sz)) mod MontgomeryAPI.eval (n:=sz) (Z.pos r) m_enc = 0)%Z;
          [ rewrite Z.mul_mod, r'_pow_correct; autorewrite with zsimplify_const; pull_Zmod; [ | t_fin ];
            rewrite Z.mod_small; [ trivial | split; try assumption; apply MontgomeryAPI.eval_small; try assumption; lia ]
          | rewrite Z.mul_assoc, Z.mul_mod, H by t_fin; autorewrite with zsimplify_const; reflexivity ] ]
      ).
  Defined.
End with_args.

Local Definition for_assumptions
  := (mul_ext_gen, add_ext_gen, sub_ext_gen, opp_ext_gen, nonzero_ext_gen).

Print Assumptions for_assumptions.

Ltac pose_m' modinv_fuel m r m' := (* (-m)⁻¹ mod r *)
  pose_modinv modinv_fuel (-Z.pos m) (Z.pos r) m'.
Ltac pose_r' modinv_fuel m r r' := (* r⁻¹ mod m *)
  pose_modinv modinv_fuel (Z.pos r) (Z.pos m) r'.

Ltac pose_m'_correct m m' r m'_correct :=
  pose_correct_if_Z
    m'
    ltac:(fun _ => constr:((Z.pos m * m') mod (Z.pos r) = (-1) mod Z.pos r))
           m'_correct.
Ltac pose_r'_correct m r r' r'_correct :=
  pose_correct_if_Z
    r'
    ltac:(fun _ => constr:((Z.pos r * r') mod (Z.pos m) = 1))
           r'_correct.

Ltac pose_m_enc_correct_montgomery m sz r m_enc m_enc_correct_montgomery :=
  cache_proof_with_type_by
    (Z.pos m = MontgomeryAPI.eval (n:=sz) (Z.pos r) m_enc)
    ltac:(vm_compute; reflexivity)
           m_enc_correct_montgomery.

Ltac pose_r'_pow_correct r' sz r m_enc r'_pow_correct :=
  cache_proof_with_type_by
    ((r' ^ Z.of_nat sz * Z.pos r ^ Z.of_nat sz) mod MontgomeryAPI.eval (n:=sz) (Z.pos r) m_enc = 1)
    ltac:(vm_compute; reflexivity)
           r'_pow_correct.

Ltac pose_montgomery_to_F sz m r' montgomery_to_F :=
  let v := (eval cbv [montgomery_to_F_gen] in (montgomery_to_F_gen sz m r')) in
  cache_term v montgomery_to_F.

Ltac pose_r_big r r_big :=
  cache_proof_with_type_by
    (Z.pos r > 1)
    ltac:(vm_compute; reflexivity)
           r_big.

Ltac pose_m_big m m_big :=
  cache_proof_with_type_by
    (1 < Z.pos m)
    ltac:(vm_compute; reflexivity)
           m_big.

Ltac pose_m_enc_small sz r m_enc m_enc_small :=
  cache_proof_with_type_by
    (small (n:=sz) (Z.pos r) m_enc)
    ltac:(pose (small_Decidable (n:=sz) (bound:=Z.pos r)); vm_decide_no_check)
           m_enc_small.

Ltac pose_map_m_enc sz r m_enc map_m_enc :=
  cache_proof_with_type_by
    (Tuple.map (n:=sz) (Z.land (Z.pos r - 1)) m_enc = m_enc)
    ltac:(pose (@dec_eq_prod); pose dec_eq_Z; vm_decide_no_check)
           map_m_enc.

Ltac internal_pose_sig_by_eq ty sigl tac_eq id :=
  cache_term_with_type_by
    ty
    ltac:(eapply (@sig_by_eq _ _ sigl _); tac_eq ())
           id.

Import ModularArithmetic.

Local Ltac reduce_eq _ :=
  cbv -[Definitions.Z.add_with_get_carry Definitions.Z.add_with_carry Definitions.Z.sub_with_get_borrow Definitions.Z.sub_with_borrow Definitions.Z.mul_split_at_bitwidth Definitions.Z.zselect runtime_add runtime_mul runtime_and runtime_opp runtime_lor Let_In].

Ltac pose_mul_ext r sz m m_enc r' r'_correct m' m'_correct m_enc_correct_montgomery r_big m_big m_enc_small montgomery_to_F mul_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      (forall (A : Z^sz) (_ : small (Z.pos r) A)
              (B : Z^sz) (_ : small (Z.pos r) B),
          montgomery_to_F (eval (f A B))
          = (montgomery_to_F (eval A) * montgomery_to_F (eval B))%F)
      /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                 (B : Z^sz) (_ : small (Z.pos r) B),
             (eval B < eval m_enc -> 0 <= eval (f A B) < eval m_enc)%Z) }
    (@mul_ext_gen r sz m m_enc r' r'_correct m' m'_correct m_enc_correct_montgomery r_big m_big m_enc_small)
    ltac:(fun _ => reduce_eq (); reflexivity)
           mul_ext.

Ltac pose_add_ext r sz m m_enc r' m_enc_correct_montgomery r_big m_big m_enc_small montgomery_to_F add_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      ((forall (A : Z^sz) (_ : small (Z.pos r) A)
               (B : Z^sz) (_ : small (Z.pos r) B),
           (eval A < eval m_enc
            -> eval B < eval m_enc
            -> montgomery_to_F (eval (f A B))
               = (montgomery_to_F (eval A) + montgomery_to_F (eval B))%F))
       /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                  (B : Z^sz) (_ : small (Z.pos r) B),
              (eval A < eval m_enc
               -> eval B < eval m_enc
               -> 0 <= eval (f A B) < eval m_enc)))%Z }
    (@add_ext_gen r sz m m_enc r' m_enc_correct_montgomery r_big m_big m_enc_small)
    ltac:(fun _ => reduce_eq (); reflexivity)
           add_ext.

Ltac pose_sub_ext r sz m m_enc r' m_enc_correct_montgomery r_big m_enc_small map_m_enc montgomery_to_F sub_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      ((forall (A : Z^sz) (_ : small (Z.pos r) A)
               (B : Z^sz) (_ : small (Z.pos r) B),
           (eval A < eval m_enc
            -> eval B < eval m_enc
            -> montgomery_to_F (eval (f A B))
               = (montgomery_to_F (eval A) - montgomery_to_F (eval B))%F))
       /\ (forall (A : Z^sz) (_ : small (Z.pos r) A)
                  (B : Z^sz) (_ : small (Z.pos r) B),
              (eval A < eval m_enc
               -> eval B < eval m_enc
               -> 0 <= eval (f A B) < eval m_enc)))%Z }
    (@sub_ext_gen r sz m m_enc r' m_enc_correct_montgomery r_big m_enc_small map_m_enc)
    ltac:(fun _ => reduce_eq (); reflexivity)
           sub_ext.

Ltac pose_opp_ext r sz m m_enc r' m_enc_correct_montgomery r_big m_enc_small map_m_enc montgomery_to_F opp_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      ((forall (A : Z^sz) (_ : small (Z.pos r) A),
           (eval A < eval m_enc
            -> montgomery_to_F (eval (f A))
               = (F.opp (montgomery_to_F (eval A)))%F))
       /\ (forall (A : Z^sz) (_ : small (Z.pos r) A),
              (eval A < eval m_enc
               -> 0 <= eval (f A) < eval m_enc)))%Z }
    (@opp_ext_gen r sz m m_enc r' m_enc_correct_montgomery r_big m_enc_small map_m_enc)
    ltac:(fun _ => reduce_eq (); reflexivity)
           opp_ext.

Ltac pose_carry_ext r sz m m_enc r' r_big montgomery_to_F carry_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      ((forall (A : Z^sz) (_ : small (Z.pos r) A),
           (eval A < eval m_enc
            -> montgomery_to_F (eval (f A))
               = (montgomery_to_F (eval A))))
       /\ (forall (A : Z^sz) (_ : small (Z.pos r) A),
              (eval A < eval m_enc
               -> 0 <= eval (f A) < eval m_enc)))%Z }
    (@carry_ext_gen r sz m m_enc r' r_big)
    ltac:(fun _ => reduce_eq (); reflexivity)
           carry_ext.

Ltac pose_nonzero_ext r sz m m_enc r' m_enc_correct_montgomery r'_pow_correct r_big m_big montgomery_to_F nonzero_ext :=
  internal_pose_sig_by_eq
    { f:Z^sz -> Z
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A),
        (eval A < eval m_enc
         -> f A = 0 <-> (montgomery_to_F (eval A) = F.of_Z m 0))%Z }
    (@nonzero_ext_gen r sz m m_enc r' m_enc_correct_montgomery r'_pow_correct r_big m_big)
    ltac:(fun _ => reduce_eq (); reflexivity)
           nonzero_ext.

Ltac pose_mul_sig r sz montgomery_to_F mul_ext mul_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A)
             (B : Z^sz) (_ : small (Z.pos r) B),
        montgomery_to_F (eval (f A B))
        = (montgomery_to_F (eval A) * montgomery_to_F (eval B))%F }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig mul_ext_gen mul_ext sig_by_eq] in (proj1_sig mul_ext)) in
          (exists v);
          abstract apply (proj2_sig mul_ext))
           mul_sig.

Ltac pose_mul_bounded r sz m_enc montgomery_to_F mul_ext mul_sig mul_bounded :=
  cache_proof_with_type_by
    (let eval := MontgomeryAPI.eval (Z.pos r) in
     forall (A : Z^sz) (_ : small (Z.pos r) A)
            (B : Z^sz) (_ : small (Z.pos r) B),
       (eval B < eval m_enc
        -> 0 <= eval (proj1_sig mul_sig A B) < eval m_enc)%Z)
    ltac:(apply (proj2_sig mul_ext))
           mul_bounded.


Ltac pose_add_sig r sz m_enc montgomery_to_F add_ext add_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A)
             (B : Z^sz) (_ : small (Z.pos r) B),
        (eval A < eval m_enc
         -> eval B < eval m_enc
         -> montgomery_to_F (eval (f A B))
            = (montgomery_to_F (eval A) + montgomery_to_F (eval B))%F)%Z }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig add_ext_gen add_ext sig_by_eq] in (proj1_sig add_ext)) in
          (exists v);
          abstract apply (proj2_sig add_ext))
           add_sig.

Ltac pose_add_bounded r sz m_enc montgomery_to_F add_ext add_sig add_bounded :=
  cache_proof_with_type_by
    (let eval := MontgomeryAPI.eval (Z.pos r) in
     (forall (A : Z^sz) (_ : small (Z.pos r) A)
             (B : Z^sz) (_ : small (Z.pos r) B),
         (eval A < eval m_enc
          -> eval B < eval m_enc
          -> 0 <= eval (proj1_sig add_sig A B) < eval m_enc))%Z)
    ltac:(apply (proj2_sig add_ext))
           add_bounded.


Ltac pose_sub_sig r sz m_enc montgomery_to_F sub_ext sub_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A)
             (B : Z^sz) (_ : small (Z.pos r) B),
        (eval A < eval m_enc
         -> eval B < eval m_enc
         -> montgomery_to_F (eval (f A B))
            = (montgomery_to_F (eval A) - montgomery_to_F (eval B))%F)%Z }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig sub_ext_gen sub_ext sig_by_eq] in (proj1_sig sub_ext)) in
          (exists v);
          abstract apply (proj2_sig sub_ext))
           sub_sig.

Ltac pose_sub_bounded r sz m_enc montgomery_to_F sub_ext sub_sig sub_bounded :=
  cache_proof_with_type_by
    (let eval := MontgomeryAPI.eval (Z.pos r) in
     (forall (A : Z^sz) (_ : small (Z.pos r) A)
             (B : Z^sz) (_ : small (Z.pos r) B),
         (eval A < eval m_enc
          -> eval B < eval m_enc
          -> 0 <= eval (proj1_sig sub_sig A B) < eval m_enc))%Z)
    ltac:(apply (proj2_sig sub_ext))
           sub_bounded.


Ltac pose_opp_sig r sz m_enc montgomery_to_F opp_ext opp_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A),
        (eval A < eval m_enc
         -> montgomery_to_F (eval (f A))
            = (F.opp (montgomery_to_F (eval A)))%F)%Z }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig opp_ext_gen opp_ext sig_by_eq] in (proj1_sig opp_ext)) in
          (exists v);
          abstract apply (proj2_sig opp_ext))
           opp_sig.

Ltac pose_opp_bounded r sz m_enc montgomery_to_F opp_ext opp_sig opp_bounded :=
  cache_proof_with_type_by
    (let eval := MontgomeryAPI.eval (Z.pos r) in
     (forall (A : Z^sz) (_ : small (Z.pos r) A),
         (eval A < eval m_enc
          -> 0 <= eval (proj1_sig opp_sig A) < eval m_enc))%Z)
    ltac:(apply (proj2_sig opp_ext))
           opp_bounded.

Ltac pose_carry_sig r sz m_enc montgomery_to_F carry_ext carry_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z^sz
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A),
        (eval A < eval m_enc
         -> montgomery_to_F (eval (f A))
            = (montgomery_to_F (eval A)))%Z }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig carry_ext_gen carry_ext sig_by_eq] in (proj1_sig carry_ext)) in
          (exists v);
          abstract apply (proj2_sig carry_ext))
           carry_sig.

Ltac pose_carry_bounded r sz m_enc montgomery_to_F carry_ext carry_sig carry_bounded :=
  cache_proof_with_type_by
    (let eval := MontgomeryAPI.eval (Z.pos r) in
     (forall (A : Z^sz) (_ : small (Z.pos r) A),
         (eval A < eval m_enc
          -> 0 <= eval (proj1_sig carry_sig A) < eval m_enc))%Z)
    ltac:(apply (proj2_sig carry_ext))
           carry_bounded.


Ltac pose_nonzero_sig r sz m m_enc montgomery_to_F nonzero_ext nonzero_sig :=
  cache_term_with_type_by
    { f:Z^sz -> Z
    | let eval := MontgomeryAPI.eval (Z.pos r) in
      forall (A : Z^sz) (_ : small (Z.pos r) A),
        (eval A < eval m_enc
         -> f A = 0 <-> (montgomery_to_F (eval A) = F.of_Z m 0))%Z }
    ltac:(idtac;
          let v := (eval cbv [proj1_sig nonzero_ext_gen nonzero_ext sig_by_eq] in (proj1_sig nonzero_ext)) in
          (exists v);
          abstract apply (proj2_sig nonzero_ext))
           nonzero_sig.

Ltac pose_ring ring :=
  (* FIXME: TODO *)
  cache_term
    I
    ring.

(* disable default unused things *)
(*Ltac pose_carry_sig carry_sig :=
  cache_term tt carry_sig.*)
Ltac pose_freeze_sig freeze_sig :=
  cache_term tt freeze_sig.
Ltac pose_Mxzladderstep_sig Mxzladderstep_sig :=
  cache_term tt Mxzladderstep_sig.