aboutsummaryrefslogtreecommitdiff
path: root/src/Spec/MontgomeryCurve.v
blob: 4e448392f04778d4ee2689af6b5283230a5d993b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
Require Crypto.Algebra.
Require Crypto.Util.GlobalSettings.

Require Import Crypto.Spec.WeierstrassCurve.

Module M.
  Section MontgomeryCurve.
    Import BinNat.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {field:@Algebra.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {Feq_dec:Decidable.DecidableRel Feq} {char_gt_2:@Ring.char_gt F Feq Fzero Fone Fopp Fadd Fsub Fmul 2}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "+" := Fadd. Local Infix "*" := Fmul.
    Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
    Local Notation "- x" := (Fopp x).
    Local Notation "x ^ 2" := (x*x) (at level 30). Local Notation "x ^ 3" := (x*x^2) (at level 30).
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Notation "2" := (1+1). Local Notation "3" := (1+2).

    Local Notation "'∞'" := unit : type_scope.
    Local Notation "'∞'" := (inr tt) : core_scope.
    Local Notation "( x , y )" := (inl (pair x y)).
    Local Open Scope core_scope.

    Context {a b: F} {b_nonzero:b <> 0}.

    Definition point := { P | match P with
                              | (x, y) => b*y^2 = x^3 + a*x^2 + x
                              | ∞ => True
                              end }.
    Definition coordinates (P:point) : (F*F + ∞) := proj1_sig P.

    Import Crypto.Util.Tactics Crypto.Algebra.Field.
    Ltac t :=
      destruct_head' point; destruct_head' sum; destruct_head' prod;
        break_match; simpl in *; break_match_hyps; trivial; try discriminate;
        repeat match goal with
               | |- _ /\ _ => split
               | [H:@eq (sum _ _ ) _ _ |- _] => symmetry in H; injection H; intros; clear H
               | [H:@eq (prod _ _ ) _ _ |- _] => symmetry in H; injection H; intros; clear H
               end;
        subst; try fsatz.

    Program Definition add (P1 P2:point) : point :=
      exist _
            match coordinates P1, coordinates P2 return _ with
              (x1, y1), (x2, y2) =>
              if Decidable.dec (x1 = x2)
              then if Decidable.dec (y1 = - y2)
                   then ∞
                   else (b*(3*x1^2+2*a*x1+1)^2/(2*b*y1)^2-a-x1-x1, (2*x1+x1+a)*(3*x1^2+2*a*x1+1)/(2*b*y1)-b*(3*x1^2+2*a*x1+1)^3/(2*b*y1)^3-y1)
              else (b*(y2-y1)^2/(x2-x1)^2-a-x1-x2, (2*x1+x2+a)*(y2-y1)/(x2-x1)-b*(y2-y1)^3/(x2-x1)^3-y1)
            | ∞, ∞ =>                      ∞
            | ∞, _ =>                      coordinates P2
            | _, ∞ =>                      coordinates P1
            end _.
    Next Obligation. Proof. t. Qed.

    Program Definition opp (P:point) : point :=
      exist _
            match P with
            | (x, y) => (x, -y)
            | ∞ => ∞
            end _.
    Next Obligation.
    Proof. t. Qed.

    Local Notation "4" := (1+3).
    Local Notation "16" := (4*4).
    Local Notation "9" := (3*3).
    Local Notation "27" := (3*9).
    Context {char_gt_27:@Ring.char_gt F Feq Fzero Fone Fopp Fadd Fsub Fmul 27}.

    Let WeierstrassA := ((3-a^2)/(3*b^2)).
    Let WeierstrassB := ((2*a^3-9*a)/(27*b^3)).

    Local Notation Wpoint := (@W.point F Feq Fadd Fmul WeierstrassA WeierstrassB).
    Program Definition MontgomeryOfWeierstrass (P:Wpoint) : point :=
      exist
        _
        match W.coordinates P return _ with
        | (x,y) => (b*x-a/3, b*y)
        | _ => ∞
        end
        _.
    Next Obligation.
    Proof. subst WeierstrassA; subst WeierstrassB; destruct P; t. Qed.

    Definition eq (P1 P2:point) :=
      match coordinates P1, coordinates P2 with
      | (x1, y1), (x2, y2) => x1 = x2 /\ y1 = y2
      | ∞, ∞ => True
      | _, _ => False
      end.

    Local Notation Wadd := (@W.add F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv field Feq_dec char_gt_2 WeierstrassA WeierstrassB).
    Lemma MontgomeryOfWeierstrass_add P1 P2 :
      eq (MontgomeryOfWeierstrass (W.add P1 P2))
         (add (MontgomeryOfWeierstrass P1) (MontgomeryOfWeierstrass P2)).
    Proof.
      cbv [WeierstrassA WeierstrassB eq MontgomeryOfWeierstrass W.add add coordinates W.coordinates proj1_sig] in *; t.
    Qed.
    
    Section AddX.
      Lemma homogeneous_x_differential_addition_releations P1 P2 :
          match coordinates (add P2 (opp P1)), coordinates P1, coordinates P2, coordinates (add P1 P2) with
          | (x, _), (x1, _), (x2, _), (x3, _) =>
            if Decidable.dec (x1 = x2)
            then x3 * (4*x1*(x1^2 + a*x1 + 1)) = (x1^2 - 1)^2
            else x3 * (x*(x1-x2)^2) = (x1*x2 - 1)^2
          | _, _, _, _ => True
          end.
      Proof. t. Qed.

      Definition onCurve xy := let 'pair x y := xy in b*y^2 = x^3 + a*x^2 + x.
      Definition xzpoint := { xz | let 'pair x z := xz in (z = 0 \/ exists y, onCurve (pair (x/z) y)) }.
      Definition xzcoordinates (P:xzpoint) : F*F := proj1_sig P.
      Program Definition toxz (P:point) : xzpoint :=
        exist _
              match coordinates P with
              | (x, y) => pair x 1
              | ∞ => pair 1 0
              end _.
      Next Obligation. t; [right; exists f0; t | left; reflexivity ]. Qed.

      Definition sig_pair_to_pair_sig {T T' I I'} (xy:{xy | let 'pair x y := xy in I x /\ I' y})
        : prod {x:T | I x} {y:T' | I' y}
        := let 'exist (pair x y) (conj pfx pfy) := xy in  pair  (exist _ x pfx) (exist _ y pfy).

      (* From Explicit Formulas Database by Lange and Bernstein,
         credited to 1987 Montgomery "Speeding the Pollard and elliptic curve
         methods of factorization", page 261, fifth and sixth displays, plus
         common-subexpression elimination, plus assumption Z1=1 *)
      
      Context {a24:F} {a24_correct:4*a24 = a+2}.
      Definition xzladderstep (X1:F) (P1 P2:xzpoint) : prod xzpoint xzpoint. refine (
        sig_pair_to_pair_sig (exist _
        match xzcoordinates P1, xzcoordinates P2 return _ with
          pair X2 Z2, pair X3 Z3 => 
          let A := X2+Z2 in
          let AA := A^2 in
          let B := X2-Z2 in
          let BB := B^2 in
          let E := AA-BB in
          let C := X3+Z3 in
          let D := X3-Z3 in
          let DA := D*A in
          let CB := C*B in
          let X5 := (DA+CB)^2 in
          let Z5 := X1*(DA-CB)^2 in
          let X4 := AA*BB in
          let Z4 := E*(BB + a24*E) in
          (pair (pair X4 Z4) (pair X5 Z5))
        end _) ).
      Proof.
        destruct P1, P2; cbv [onCurve xzcoordinates] in *. t; intuition idtac.
        { left. fsatz. }
        { left. fsatz. }
        admit.
        admit.
        admit.
        admit.
        { right.
          admit. (* the following used to work, but slowly:
          exists ((fun x1 y1 x2 y2 => (2*x1+x1+a)*(3*x1^2+2*a*x1+1)/(2*b*y1)-b*(3*x1^2+2*a*x1+1)^3/(2*b*y1)^3-y1) (f1/f2) x0 (f/f0) x).
          Algebra.common_denominator_in H.
          Algebra.common_denominator_in H0.
          Algebra.common_denominator.
          abstract Algebra.nsatz.

          idtac.
          admit.
          admit.
          admit.
          admit.
          admit. *) }
        { right.
          (* exists ((fun x1 y1 x2 y2 => (2*x1+x2+a)*(y2-y1)/(x2-x1)-b*(y2-y1)^3/(x2-x1)^3-y1) (f1/f2) x0 (f/f0) x). *)
          (* XXX: this case is probably not true -- there is not necessarily a guarantee that the output x/z is on curve if [X1] was not the x coordinate of the difference of input points as requored *)
      Abort.
    End AddX.
  End MontgomeryCurve.
End M.