1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
Require Crypto.Curves.Edwards.Pre.
Require Crypto.Util.Decidable.
Module E.
Section TwistedEdwardsCurves.
(* Twisted Edwards curves with complete addition laws. References:
* <https://eprint.iacr.org/2008/013.pdf>
* <http://ed25519.cr.yp.to/ed25519-20110926.pdf>
* <https://eprint.iacr.org/2015/677.pdf>
*)
Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
{field:@Algebra.Hierarchy.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
{char_ge_3 : @Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul (BinNat.N.succ_pos BinNat.N.two)}
{Feq_dec:Decidable.DecidableRel Feq}.
Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
Local Notation "0" := Fzero. Local Notation "1" := Fone.
Local Infix "+" := Fadd. Local Infix "*" := Fmul.
Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
Local Notation "x ^ 2" := (x*x) (at level 30).
Context {a d: F}
{nonzero_a : a <> 0}
{square_a : exists sqrt_a, sqrt_a^2 = a}
{nonsquare_d : forall x, x^2 <> d}.
Definition point := { xy | let '(x, y) := xy in a*x^2 + y^2 = 1 + d*x^2*y^2 }.
Definition coordinates (P:point) : (F*F) := let (xy, xy_onCurve_proof) := P in xy.
Definition eq (P Q:point) :=
match coordinates P, coordinates Q with
(x1,y1), (x2,y2) => x1 = x2 /\ y1 = y2
end.
Program Definition zero : point := (0, 1).
Next Obligation. eauto using Pre.onCurve_zero. Qed.
Program Definition add (P1 P2:point) : point :=
match coordinates P1, coordinates P2 return (F*F) with
(x1, y1), (x2, y2) =>
(((x1*y2 + y1*x2)/(1 + d*x1*x2*y1*y2)) , ((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2)))
end.
Next Obligation. do 2 match goal with P : point |- _ => destruct P as [[??]?] end; eapply Pre.onCurve_add; eauto. Qed.
Fixpoint mul (n:nat) (P : point) : point :=
match n with
| O => zero
| S n' => add P (mul n' P)
end.
End TwistedEdwardsCurves.
End E.
Delimit Scope E_scope with E.
Infix "=" := E.eq : E_scope.
Infix "+" := E.add : E_scope.
Infix "*" := E.mul : E_scope.
|