aboutsummaryrefslogtreecommitdiff
path: root/src/RewriterRulesInterpGood.v
blob: c73867339f632a4269a1e2ad0c2ee91473c12ef6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
Require Import Coq.ZArith.ZArith.
Require Import Coq.micromega.Lia.
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Coq.MSets.MSetPositive.
Require Import Coq.FSets.FMapPositive.
Require Import Crypto.Language.
Require Import Crypto.LanguageInversion.
Require Import Crypto.LanguageWf.
Require Import Crypto.UnderLetsProofs.
Require Import Crypto.GENERATEDIdentifiersWithoutTypesProofs.
Require Import Crypto.Rewriter.
Require Import Crypto.RewriterWf1.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Hints.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.ZSimplify.Core.
Require Import Crypto.Util.ZUtil.ZSimplify.
Require Import Crypto.Util.ZUtil.ZSimplify.Simple.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.AddGetCarry.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Zselect.
Require Import Crypto.Util.ZUtil.Div.
Require Import Crypto.Util.ZUtil.Modulo.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.Operations.
Require Import Crypto.Util.ZRange.BasicLemmas.
Require Import Crypto.Util.ZRange.OperationsBounds.
Require Import Crypto.Util.Tactics.NormalizeCommutativeIdentifier.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Tactics.SetEvars.
Require Import Crypto.Util.Tactics.SubstEvars.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.ListUtil.Forall.
Require Import Crypto.Util.ListUtil.ForallIn.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.CPSNotations.
Require Import Crypto.Util.HProp.
Require Import Crypto.Util.Decidable.
Import ListNotations. Local Open Scope list_scope.
Local Open Scope Z_scope.

Import EqNotations.
Module Compilers.
  Import Language.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLetsProofs.Compilers.
  Import GENERATEDIdentifiersWithoutTypesProofs.Compilers.
  Import Rewriter.Compilers.
  Import RewriterWf1.Compilers.
  Import expr.Notations.
  Import RewriterWf1.Compilers.RewriteRules.
  Import defaults.

  Module Import RewriteRules.
    Import Rewriter.Compilers.RewriteRules.
    Section with_cast.
      Context {cast_outside_of_range : zrange -> Z -> Z}.

      Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).

      Local Lemma rlist_rect_eq {var A P ivar} Pnil Pcons ls
        : @rlist_rect var A P ivar Pnil Pcons ls
          = match invert_expr.reflect_list ls with
            | Some ls
              => Some (list_rect
                         (fun _ => _)
                         Pnil
                         (fun x xs rec => rec' <-- rec; Pcons x xs rec')
                         ls)%under_lets
            | None => None
            end.
      Proof. cbv [rlist_rect Compile.option_bind' Option.bind]; reflexivity. Qed.

      Local Lemma UnderLets_interp_list_rect {A P} Pnil Pcons ls
        : UnderLets.interp
            (@ident_interp)
            (list_rect
               (fun _ : list A => UnderLets.UnderLets base.type ident _ P)
               Pnil
               (fun x xs rec => rec' <-- rec; Pcons x xs rec')
               ls)%under_lets
          = list_rect
              (fun _ => P)
              (UnderLets.interp (@ident_interp) Pnil)
              (fun x xs rec => UnderLets.interp (@ident_interp) (Pcons x xs rec))
              ls.
      Proof.
        induction ls as [|x xs IHxs]; cbn [list_rect]; [ reflexivity | ].
        rewrite UnderLets.interp_splice, IHxs; reflexivity.
      Qed.

      Local Lemma unfold_is_bounded_by_bool v r
        : is_bounded_by_bool v r = true -> lower r <= v <= upper r.
      Proof using Type.
        cbv [is_bounded_by_bool]; intro; split_andb; Z.ltb_to_lt; split; assumption.
      Qed.

      Local Lemma unfold_is_tighter_than_bool r1 r2
        : is_tighter_than_bool r1 r2 = true -> lower r2 <= lower r1 /\ upper r1 <= upper r2.
      Proof using Type.
        cbv [is_tighter_than_bool]; intro; split_andb; Z.ltb_to_lt; split; assumption.
      Qed.

      Local Notation rewrite_rules_interp_goodT := (@Compile.rewrite_rules_interp_goodT ident pattern.ident (@pattern.ident.arg_types) (@pattern.ident.to_typed) (@ident_interp)).

      Local Ltac do_cbv0 :=
        cbv [id
               Compile.rewrite_rules_interp_goodT_curried
               Compile.rewrite_rule_data_interp_goodT_curried Compile.under_with_unification_resultT_relation_hetero Compile.under_with_unification_resultT'_relation_hetero Compile.wf_with_unification_resultT Compile.under_type_of_list_relation_cps Compile.under_type_of_list_relation1_cps pattern.pattern_of_anypattern pattern.type_of_anypattern Compile.rew_replacement Compile.rew_should_do_again Compile.rew_with_opt Compile.rew_under_lets Compile.wf_with_unification_resultT Compile.pattern_default_interp pattern.type.under_forall_vars_relation pattern.type.under_forall_vars_relation1 Compile.deep_rewrite_ruleTP_gen Compile.with_unification_resultT' pattern.ident.arg_types pattern.type.lam_forall_vars Compilers.pattern.type.lam_forall_vars_gen Compile.pattern_default_interp' pattern.collect_vars PositiveMap.empty pattern.type.collect_vars PositiveSet.elements PositiveSet.union pattern.base.collect_vars PositiveSet.empty PositiveSet.xelements Compile.lam_type_of_list id pattern.ident.to_typed Compile.under_type_of_list_relation_cps Compile.deep_rewrite_ruleTP_gen_good_relation Compile.normalize_deep_rewrite_rule pattern.type.subst_default PositiveSet.add PositiveSet.rev PositiveSet.rev_append PositiveMap.add Compile.option_bind' Compile.wf_value Compile.value pattern.base.subst_default pattern.base.lookup_default PositiveMap.find Compile.rewrite_ruleTP ident.smart_Literal Compile.value_interp_related
               Reify.expr_value_to_rewrite_rule_replacement UnderLets.flat_map Compile.reify_expr_beta_iota Compile.reflect_expr_beta_iota Compile.reflect_ident_iota Compile.reify_to_UnderLets UnderLets.of_expr Compile.Base_value];
        cbn [UnderLets.splice Compile.reflect invert_expr.invert_Literal invert_expr.ident.invert_Literal Compile.splice_under_lets_with_value].
      Local Ltac do_cbv :=
        do_cbv0;
        cbv [List.map List.fold_right List.rev list_rect orb List.app].

      Local Ltac start_interp_good :=
        apply Compile.rewrite_rules_interp_goodT_by_curried;
        do_cbv;
        lazymatch goal with
        | [ |- forall x p, In (@existT ?A ?P x p) ?ls -> @?Q x p ]
          => let Q' := fresh in
             pose Q as Q';
             change (forall x p, In (@existT A P x p) ls -> Q' x p);
             apply (@forall_In_existT A P Q' ls); subst Q'; cbv [projT1 projT2 id]
        end;
        do_cbv0;
        repeat first [ progress intros
                     | match goal with
                       | [ |- { pf : ?x = ?x | _ } ] => (exists eq_refl)
                       | [ |- True /\ _ ] => split; [ exact I | ]
                       | [ |- _ /\ _ ] => split; [ intros; exact I | ]
                       end
                     | progress cbn [eq_rect] in * ];
        cbn [fst snd base.interp base.base_interp type.interp projT1 projT2 UnderLets.interp expr.interp type.related ident.gen_interp UnderLets.interp_related UnderLets.interp_related_gen] in *.

      Ltac recurse_interp_related_step :=
        let do_replace v :=
            ((tryif is_evar v then fail else idtac);
             let v' := open_constr:(_) in
             let v'' := fresh in
             cut (v = v'); [ generalize v; intros v'' ?; subst v'' | symmetry ]) in
        match goal with
        | _ => progress cbv [expr.interp_related] in *
        | _ => progress cbn [Compile.reify_expr]
        | [ |- context[(fst ?x, snd ?x)] ] => progress eta_expand
        | [ |- context[match ?x with pair a b => _ end] ] => progress eta_expand
        | [ |- expr.interp_related_gen ?ident_interp ?R ?f ?v ]
          => do_replace v
        | [ |- exists (fv : ?T1 -> ?T2) (ev : ?T1),
              _ /\ _ /\ fv ev = ?x ]
          => lazymatch T1 with Z => idtac | (Z * Z)%type => idtac end;
             lazymatch T2 with Z => idtac | (Z * Z)%type => idtac end;
             first [ do_replace x
                   | is_evar x; do 2 eexists; repeat apply conj; [ | | reflexivity ] ]
        | _ => progress intros
        | [ |- expr.interp_related_gen _ _ _ ?ev ] => is_evar ev; eassumption
        | [ |- expr.interp_related_gen _ _ (?f @ ?x) ?ev ]
          => is_evar ev;
             let fh := fresh in
             let xh := fresh in
             set (fh := f); set (xh := x); cbn [expr.interp_related_gen]; subst fh xh;
             do 2 eexists; repeat apply conj; [ | | reflexivity ]
        | [ |- expr.interp_related_gen _ _ (expr.Abs ?f) _ ]
          => let fh := fresh in set (fh := f); cbn [expr.interp_related_gen]; subst fh
        | [ |- expr.interp_related_gen _ _ (expr.Ident ?idc) ?ev ]
          => is_evar ev;
             cbn [expr.interp_related_gen]; apply ident.gen_interp_Proper; reflexivity
        | [ |- _ = _ :> ?T ]
          => lazymatch T with
             | BinInt.Z => idtac
             | (BinInt.Z * BinInt.Z)%type => idtac
             end;
             progress cbn [ident_interp fst snd]
        | [ |- ?x = ?y ] => tryif first [ has_evar x | has_evar y ] then fail else (progress subst)
        | [ |- ?x = ?y ] => tryif first [ has_evar x | has_evar y ] then fail else reflexivity
        | [ |- ?x = ?x ] => tryif has_evar x then fail else reflexivity
        | [ |- ?ev = _ ] => is_evar ev; reflexivity
        | [ |- _ = ?ev ] => is_evar ev; reflexivity
        end.

      (* TODO: MOVE ME? *)
      Local Ltac recursive_match_to_list_case term :=
        lazymatch term with
        | context G[match ?ls with nil => ?N | cons x xs => @?C x xs end]
          => let T := type of N in
             let term := context G[list_case (fun _ => T) N C ls] in
             recursive_match_to_list_case term
        | context[match _ with nil => _ | _ => _ end]
          => let G_f
                 := match term with
                    | context G[fun x : ?T => @?f x]
                      => lazymatch f with
                         | context[match _ with nil => _ | _ => _ end]
                           => let f' := fresh in
                              let T' := type of f in
                              constr:(((fun f' : T' => ltac:(let G' := context G[f'] in exact G')),
                                       f))
                         end
                    end in
             lazymatch G_f with
             | ((fun f' => ?G), (fun x : ?T => ?f))
               => let x' := fresh in
                  let rep := constr:(fun x' : T
                                     => ltac:(let f := constr:(match x' with x => f end) in
                                              let f := recursive_match_to_list_case f in
                                              exact f)) in
                  let term := constr:(match rep with f' => G end) in
                  recursive_match_to_list_case term
             end
        | _ => term
        end.
      Local Ltac recursive_match_to_list_case_in_goal :=
        let G := match goal with |- ?G => G end in
        let G := recursive_match_to_list_case G in
        change G.

      Local Ltac interp_good_t_step_related :=
        first [ lazymatch goal with
                | [ |- ?x = ?x ] => reflexivity
                | [ |- True ] => exact I
                | [ H : ?x = true, H' : ?x = false |- _ ] => exfalso; clear -H H'; congruence
                | [ |- ?G ] => has_evar G; reflexivity
                | [ |- context[expr.interp_related_gen _ _ _ _] ] => reflexivity
                | [ |- context[_ == _] ] => reflexivity
                (*| [ |- context[(fst ?x, snd ?x)] ] => progress eta_expand
                | [ |- context[match ?x with pair a b => _ end] ] => progress eta_expand*)
                end
              | match goal with
                | [ |- UnderLets.interp_related ?ii ?R (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (@list_rect ?A (fun _ => ?P) ?N ?C ?ls) ]
                  => progress change (@list_rect A (fun _ => P) N C ls) with (@ident.Thunked.list_rect A P (fun _ => N) C ls)
                | [ |- expr.interp_related_gen ?ii ?R (#ident.list_rect @ _ @ _ @ _)%expr (@list_rect ?A (fun _ => ?P) ?N ?C ?ls) ]
                  => progress change (@list_rect A (fun _ => P) N C ls) with (@ident.Thunked.list_rect A P (fun _ => N) C ls)
                | [ |- expr.interp_related_gen ?ii ?R (#ident.list_case @ _ @ _ @ _)%expr (@list_case ?A (fun _ => ?P) ?N ?C ?ls) ]
                  => progress change (@list_case A (fun _ => P) N C ls) with (@ident.Thunked.list_case A P (fun _ => N) C ls)
                | [ |- UnderLets.interp_related _ _ (list_rect _ _ _ _) (List.app ?ls1 ?ls2) ]
                  => rewrite (eq_app_list_rect ls1 ls2)
                | [ |- UnderLets.interp_related _ _ (list_rect _ _ _ _) (@flat_map ?A ?B ?f ?ls) ]
                  => rewrite (@eq_flat_map_list_rect A B f ls)
                | [ |- UnderLets.interp_related _ _ (list_rect _ _ _ _) (@partition ?A ?f ?ls) ]
                  => rewrite (@eq_partition_list_rect A f ls)
                | [ |- UnderLets.interp_related _ _ (list_rect _ _ _ _) (@List.map ?A ?B ?f ?ls) ]
                  => rewrite (@eq_map_list_rect A B f ls)
                | [ |- UnderLets.interp_related _ _ (list_rect _ _ _ _ _) (@List.combine ?A ?B ?xs ?ys) ]
                  => rewrite (@eq_combine_list_rect A B xs ys)
                | [ |- UnderLets.interp_related _ _ (nat_rect _ _ _ _) (List.repeat ?x ?n) ]
                  => rewrite (eq_repeat_nat_rect x n)
                | [ |- ?R (nat_rect _ _ _ _ _) (@List.firstn ?A ?n ?ls) ]
                  => rewrite (@eq_firstn_nat_rect A n ls)
                | [ |- ?R (nat_rect _ _ _ _ _) (@List.skipn ?A ?n ?ls) ]
                  => rewrite (@eq_skipn_nat_rect A n ls)
                | [ |- ?R (list_rect _ _ _ _) (@List.rev ?A ?xs) ]
                  => rewrite (@eq_rev_list_rect A xs)
                | [ |- ?R (list_rect _ _ _ _) (@List.length ?A ?xs) ]
                  => rewrite (@eq_length_list_rect A xs)
                | [ |- ?R (list_rect _ _ _ _) (@List.flat_map ?A ?B ?f ?xs) ]
                  => rewrite (@eq_flat_map_list_rect A B f xs)
                | [ |- ?R (list_rect _ _ _ _) (@List.partition ?A ?f ?xs) ]
                  => rewrite (@eq_partition_list_rect A f xs)
                | [ |- ?R (nat_rect _ _ _ _ _) (@update_nth ?A ?n ?f ?xs) ]
                  => rewrite (@eq_update_nth_nat_rect A n f xs)

                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (List.app ?ls1 ?ls2) ]
                  => rewrite (eq_app_list_rect ls1 ls2)
                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (List.app ?ls1 ?ls2) ]
                  => rewrite (eq_app_list_rect ls1 ls2)
                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (@flat_map ?A ?B ?f ?ls) ]
                  => rewrite (@eq_flat_map_list_rect A B f ls)
                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (@partition ?A ?f ?ls) ]
                  => rewrite (@eq_partition_list_rect A f ls)
                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect @ _ @ _ @ _)%expr) (@List.map ?A ?B ?f ?ls) ]
                  => rewrite (@eq_map_list_rect A B f ls)
                | [ |- UnderLets.interp_related _ _ (UnderLets.Base (#ident.list_rect_arrow @ _ @ _ @ _ @ _)%expr) (@List.combine ?A ?B ?xs ?ys) ]
                  => rewrite (@eq_combine_list_rect A B xs ys)
                | [ |- UnderLets.interp_related _ _ _ (@fold_right ?A ?B ?f ?v ?ls) ]
                  => rewrite (@eq_fold_right_list_rect A B f v ls)
                | [ |- ?R (#ident.nat_rect_arrow @ _ @ _ @ _ @ _)%expr (@List.firstn ?A ?n ?ls) ]
                  => rewrite (@eq_firstn_nat_rect A n ls)
                | [ |- ?R (#ident.nat_rect_arrow @ _ @ _ @ _ @ _)%expr (@List.skipn ?A ?n ?ls) ]
                  => rewrite (@eq_skipn_nat_rect A n ls)
                | [ |- ?R (#ident.list_rect @ _ @ _ @ _)%expr (@List.rev ?A ?xs) ]
                  => rewrite (@eq_rev_list_rect A xs)
                | [ |- ?R (#ident.list_rect @ _ @ _ @ _)%expr (@List.length ?A ?xs) ]
                  => rewrite (@eq_length_list_rect A xs)
                | [ |- ?R (#ident.list_rect @ _ @ _ @ _)%expr (@List.flat_map ?A ?B ?f ?xs) ]
                  => rewrite (@eq_flat_map_list_rect A B f xs)
                | [ |- ?R (#ident.list_rect @ _ @ _ @ _)%expr (@List.partition ?A ?f ?xs) ]
                  => rewrite (@eq_partition_list_rect A f xs)
                | [ |- ?R (#ident.nat_rect_arrow @ _ @ _ @ _ @ _)%expr (@update_nth ?A ?n ?f ?xs) ]
                  => rewrite (@eq_update_nth_nat_rect A n f xs)
                | [ |- ?R (#ident.list_rect_arrow @ _ @ _ @ _ @ _)%expr (@List.combine ?A ?B ?xs ?ys) ]
                  => rewrite (@eq_combine_list_rect A B xs ys)


                | [ |- expr.interp_related_gen _ _ (#ident.list_rect @ _ @ _ @ _)%expr (ident.Thunked.list_rect _ _ _ _) ]
                  => recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                     [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                       [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                         [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ]
                         | ]
                       | ]
                     | ]
                | [ |- expr.interp_related_gen _ _ (#ident.list_rect_arrow @ _ @ _ @ _ @ _)%expr (list_rect _ _ _ _ _) ]
                  => recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                     [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                       [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                         [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                           [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ]
                           | ]
                         | ]
                       | ]
                     | ]
                | [ |- expr.interp_related_gen _ _ (#ident.nat_rect @ _ @ _ @ _)%expr (ident.Thunked.nat_rect _ _ _ _) ]
                  => recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                     [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                       [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                         [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ]
                         | ]
                       | ]
                     | ]
                | [ |- expr.interp_related_gen _ _ (#ident.nat_rect_arrow @ _ @ _ @ _ @ _)%expr (nat_rect _ _ _ _ _) ]
                  => recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                     [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                       [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                         [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                           [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ]
                           | ]
                         | ]
                       | ]
                     | ]
                | [ |- expr.interp_related_gen _ _ (#ident.list_case @ _ @ _ @ _)%expr (ident.Thunked.list_case _ _ _ _) ]
                  => recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                     [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                       [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ];
                         [ recurse_interp_related_step; [ recurse_interp_related_step | reflexivity ]
                         | ]
                       | ]
                     | ]
                | [ |- context[match _ with nil => _ | _ => _ end] ] => progress recursive_match_to_list_case_in_goal
                end
              | progress cbn [expr.interp ident.gen_interp fst snd Compile.reify Compile.reflect Compile.wf_value' Compile.value' Option.bind UnderLets.interp list_case type.interp base.interp base.base_interp ident.to_fancy invert_Some ident.fancy.interp ident.fancy.interp_with_wordmax Compile.reify_expr bool_rect UnderLets.interp_related UnderLets.interp_related_gen type.related] in *
              | progress cbv [Compile.option_bind' respectful expr.interp_related] in *
              | progress fold (@type.interp _ base.interp)
              | progress fold (@base.interp)
              | progress change S with Nat.succ
              | match goal with
                | [ |- context[List.map _ (Lists.List.repeat _ _)] ] => rewrite map_repeat
                | [ |- context[List.map _ (List.map _ _)] ] => rewrite map_map
                | [ |- context[List.map (fun x => x) _] ] => rewrite map_id
                | [ |- context[List.map _ (List.rev _)] ] => rewrite map_rev
                | [ |- context[List.map _ (firstn _ _)] ] => rewrite <- firstn_map
                | [ |- context[List.map _ (skipn _ _)] ] => rewrite <- skipn_map
                | [ |- context[List.length (List.map _ _)] ] => rewrite map_length
                | [ |- context[List.combine (List.map _ _) _] ] => rewrite combine_map_l
                | [ |- context[List.combine _ (List.map _ _)] ] => rewrite combine_map_r
                | [ |- context[expr.interp _ (reify_list _)] ] => rewrite expr.interp_reify_list
                | [ |- context[expr.interp _ (UnderLets.to_expr ?e)] ] => rewrite UnderLets.interp_to_expr
                | [ |- context[UnderLets.interp _ (UnderLets.splice_list _ _)] ] => rewrite UnderLets.interp_splice_list
                | [ |- context[rlist_rect] ] => rewrite rlist_rect_eq
                | [ |- context[UnderLets.interp _ (list_rect _ _ _ _)] ] => rewrite UnderLets_interp_list_rect
                | [ |- context[UnderLets.interp _ (UnderLets.splice _ _)] ] => rewrite UnderLets.interp_splice
                | [ |- context[list_rect _ _ _ (List.map _ _)] ] => rewrite list_rect_map
                | [ |- context[expr.interp_related_gen _ _ (reify_list _)] ]
                  => rewrite expr.reify_list_interp_related_gen_iff
                | [ H : context[expr.interp_related_gen _ _ (reify_list _)] |- _ ]
                  => rewrite expr.reify_list_interp_related_gen_iff in H
                | [ |- expr.interp_related_gen ?ident_interp _ (UnderLets.to_expr ?x) ?y ]
                  => change (expr.interp_related ident_interp (UnderLets.to_expr x) y);
                     rewrite <- UnderLets.to_expr_interp_related_iff
                | [ |- context[Forall2 _ (List.map _ _) _] ] => rewrite Forall2_map_l_iff
                | [ |- context[Forall2 _ _ (List.map _ _)] ] => rewrite Forall2_map_r_iff
                | [ |- context[Forall2 _ (List.repeat _ _) (List.repeat _ _)] ] => rewrite Forall2_repeat_iff
                | [ |- context[Forall2 _ (List.rev _) (List.rev _)] ] => rewrite Forall2_rev_iff
                | [ |- context[Forall2 _ ?x ?x] ] => rewrite Forall2_Forall; cbv [Proper]
                | [ |- context[Forall _ (seq _ _)] ] => rewrite Forall_seq
                | [ H : Forall2 ?R ?l1 ?l2 |- Forall2 ?R (List.firstn ?n ?l1) (List.firstn ?n ?l2) ]
                  => apply Forall2_firstn, H
                | [ H : Forall2 ?R ?l1 ?l2 |- Forall2 ?R (List.skipn ?n ?l1) (List.skipn ?n ?l2) ]
                  => apply Forall2_skipn, H
                | [ |- Forall2 ?R (List.combine _ _) (List.combine _ _) ]
                  => eapply Forall2_combine; [ | eassumption | eassumption ]
                | [ H : List.Forall2 _ ?l1 ?l2, H' : ?R ?v1 ?v2 |- ?R (nth_default ?v1 ?l1 ?x) (nth_default ?v2 ?l2 ?x) ]
                  => apply Forall2_forall_iff''; split; assumption
                | [ H : List.Forall2 _ ?x ?y |- List.length ?x = List.length ?y ]
                  => eapply eq_length_Forall2, H
                | [ |- exists fv xv, _ /\ _ /\ fv xv = ?f ?x ]
                  => exists f, x; repeat apply conj; [ solve [ repeat interp_good_t_step_related ] | | reflexivity ]
                | [ |- _ /\ ?x = ?x ] => split; [ | reflexivity ]
                | [ |- UnderLets.interp_related
                         ?ident_interp ?R
                         (list_rect
                            (fun _ : list (expr ?A) => UnderLets.UnderLets _ _ _ ?B)
                            ?Pnil
                            ?Pcons
                            ?ls)
                         (list_rect
                            (fun _ : list _ => ?B')
                            ?Pnil'
                            ?Pcons'
                            ?ls') ]
                  => apply (@UnderLets.list_rect_interp_related _ _ _ ident_interp A B Pnil Pcons ls B' Pnil' Pcons' ls' R)
                | [ |- UnderLets.interp_related
                         ?ident_interp ?R
                         (list_rect
                            (fun _ : list (expr ?A) => ?B -> UnderLets.UnderLets _ _ _ ?C)
                            ?Pnil
                            ?Pcons
                            ?ls
                            ?x)
                         (list_rect
                            (fun _ : list _ => ?B' -> ?C')
                            ?Pnil'
                            ?Pcons'
                            ?ls'
                            ?x') ]
                  => apply (@UnderLets.list_rect_arrow_interp_related _ _ _ ident_interp A B C Pnil Pcons ls x B' C' Pnil' Pcons' ls' x' R (expr.interp_related ident_interp))
                | [ |- UnderLets.interp_related _ _ (nat_rect _ _ _ _) (nat_rect _ _ _ _) ]
                  => apply UnderLets.nat_rect_interp_related
                | [ |- UnderLets.interp_related _ _ (nat_rect _ _ _ _ _) (nat_rect _ _ _ _ _) ]
                  => eapply UnderLets.nat_rect_arrow_interp_related; [ .. | eassumption ]
                | [ |- UnderLets.interp_related _ _ (UnderLets.splice _ _) _ ]
                  => rewrite UnderLets.splice_interp_related_iff
                | [ |- UnderLets.interp_related ?ident_interp _ (UnderLets.splice_list _ _) _ ]
                  => apply UnderLets.splice_list_interp_related_of_ex with (RA:=expr.interp_related ident_interp); exists (fun x => x); eexists; repeat apply conj; [ | | reflexivity ]
                | [ H : UnderLets.interp_related _ _ ?e ?v1 |- UnderLets.interp_related _ _ ?e ?f ]
                  => let f := match (eval pattern v1 in f) with ?f _ => f end in
                     eapply (@UnderLets.interp_related_Proper_impl_same_UnderLets _ _ _ _ _ _ _ _ _ e v1 f); [ | exact H ]; cbv beta
                | [ H : forall x y, ?R x y -> UnderLets.interp_related _ _ (?e x) (?v1 y) |- UnderLets.interp_related _ _ (?e ?xv) ?f ]
                  => lazymatch f with
                     | context[v1 ?yv]
                       => let f := match (eval pattern (v1 yv) in f) with ?f _ => f end in
                          eapply (@UnderLets.interp_related_Proper_impl_same_UnderLets _ _ _ _ _ _ _ _ _ (e xv) (v1 yv) f); [ | eapply H; assumption ]
                     end
                | [ |- expr.interp_related_gen
                         _ _
                         (#(ident.prod_rect) @ ?f @ ?e)%expr
                         match ?e' with pair a b => @?f' a b end ]
                  => let fh := fresh in
                     let eh := fresh in
                     set (fh := f); set (eh := e); cbn [expr.interp_related_gen]; subst fh eh;
                     exists (fun ev => match ev with pair a b => f' a b end), e';
                     repeat apply conj;
                     [ | assumption | reflexivity ];
                     exists (fun fv ev => match ev with pair a b => fv a b end), f';
                     repeat apply conj;
                     [ cbn [type.interp type.related ident_interp]; cbv [respectful]; intros; subst; eta_expand; auto | | reflexivity ]
                | [ |- expr.interp_related_gen
                         _ _
                         (#(ident.bool_rect) @ ?t @ ?f @ ?b)%expr
                         (bool_rect ?P ?t' ?f' ?b') ]
                  => let th := fresh in
                     let fh := fresh in
                     let bh := fresh in
                     set (th := t); set (fh := f); set (bh := b); cbn [expr.interp_related_gen]; subst th fh bh;
                     unshelve
                       ((exists (bool_rect P t' f'), b'); repeat apply conj;
                        [ | shelve | reflexivity ];
                        (exists (fun fv => bool_rect P t' (fv tt)), (fun _ => f')); repeat apply conj;
                        [ | shelve | reflexivity ];
                        (exists (fun tv fv => bool_rect P (tv tt) (fv tt)), (fun _ => t')); repeat apply conj;
                        [ | shelve | reflexivity ])
                | [ |- @expr.interp_related_gen _ _ _ _ _ _ (type.base ?t) _ _ ]
                  => lazymatch t with
                     | base.type.type_base base.type.Z => idtac
                     | base.type.prod (base.type.type_base base.type.Z) (base.type.type_base base.type.Z) => idtac
                     end;
                     progress repeat recurse_interp_related_step
                | [ |- exists (fv : ?T1 -> ?T2) (ev : ?T1),
                      _ /\ _ /\ fv ev = ?x ]
                  => lazymatch T1 with Z => idtac | (Z * Z)%type => idtac end;
                     lazymatch T2 with Z => idtac | (Z * Z)%type => idtac end;
                     progress repeat recurse_interp_related_step
                | [ |- expr.interp_related_gen _ _ (expr.Abs ?f) _ ]
                  => let fh := fresh in set (fh := f); cbn [expr.interp_related_gen]; subst fh
                | [ H : expr.interp_related_gen _ _ ?x ?x' |- expr.interp_related_gen _ _ (?f @ ?x) (?f' ?x') ]
                  => let fh := fresh in
                     let xh := fresh in
                     set (fh := f); set (xh := x); cbn [expr.interp_related_gen]; subst fh xh;
                     exists f', x'; repeat apply conj;
                     [ | exact H | reflexivity ]
                | [ |- List.Forall2 _ (update_nth _ _ _) (update_nth _ _ _) ] => apply Forall2_update_nth
                | [ H : zrange * zrange |- _ ] => destruct H
                end
              | progress intros
              | progress subst
              | assumption
              | progress inversion_option
              | progress destruct_head'_and
              | progress destruct_head'_unit
              | progress split_andb
              | match goal with
                | [ |- Lists.List.repeat _ _ = Lists.List.repeat _ _ ] => apply f_equal2
                | [ |- firstn _ _ = firstn _ _ ] => apply f_equal2
                | [ |- skipn _ _ = skipn _ _ ] => apply f_equal2
                | [ |- rev _ = rev _ ] => apply f_equal
                | [ |- List.app ?l1 ?l2 = List.app ?l1' ?l2 ] => apply f_equal2
                | [ |- List.app ?l1 ?l2 = List.app ?l1 ?l2' ] => apply f_equal2
                | [ |- cons _ _ = cons _ _ ] => apply f_equal2
                | [ |- list_rect _ ?Pnil ?Pcons ?ls = list_rect _ ?Pnil ?Pcons' ?ls ]
                  => apply list_rect_Proper; [ reflexivity | repeat intro | reflexivity ]
                | [ |- bool_rect _ ?x ?y ?b = bool_rect _ ?x ?y ?b' ]
                  => apply f_equal3; [ reflexivity | reflexivity | solve [ repeat interp_good_t_step_related ] ]
                | [ H : expr.wf _ ?v1 ?v2 |- expr.interp _ ?v1 = expr.interp _ ?v2 ]
                  => apply (expr.wf_interp_Proper _ _ _ H ltac:(assumption))
                | [ |- ?R (?f (?g (if ?b then ?x else ?y))) (bool_rect ?A ?B ?C ?D) ]
                  => rewrite <- (@Bool.pull_bool_if _ _ g b), <- (@Bool.pull_bool_if _ _ f b);
                     change (R (bool_rect _ (f (g x)) (f (g y)) b) (bool_rect A B C D))
                | [ |- context[invert_expr.reflect_list ?ls] ]
                  => destruct (invert_expr.reflect_list ls) eqn:?; expr.invert_subst
                | [ |- ?f (nth_default _ _ _) = _ ]
                  => rewrite <- (@map_nth_default_always _ _ f)
                | [ |- map ?f ?ls = map ?g ?ls ] => apply map_ext_in
                | [ |- List.map _ (update_nth _ _ _) = update_nth _ _ _ ] => apply map_update_nth_ext
                | [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl)
                | [ H : forall v : unit, _ |- _ ] => specialize (H tt)
                | [ H : _ = expr.interp ?ii ?v |- _ ] => is_var v; generalize dependent (expr.interp ii v); clear v
                | [ |- bool_rect _ _ _ ?b = bool_rect _ _ _ ?b ]
                  => is_var b; destruct b; cbv [bool_rect]
                | [ H : (forall x y, _ -> expr.interp _ (UnderLets.interp _ (?f1 x)) = expr.interp _ (UnderLets.interp _ (?f2 y)))
                    |- expr.interp _ (UnderLets.interp _ (?f1 ?x1)) = expr.interp _ (UnderLets.interp _ (?f2 ?x2)) ]
                  => apply H
                | [ H : (forall x y, _ -> forall x' y', _ -> expr.interp _ (UnderLets.interp _ (?f1 x x')) = expr.interp _ (UnderLets.interp _ (?f2 y y')))
                    |- expr.interp _ (UnderLets.interp _ (?f1 ?x1 ?y1)) = expr.interp _ (UnderLets.interp _ (?f2 ?x2 ?y2)) ]
                  => apply H
                | [ |- context G[rwhen ?v ?b] ]
                  => let c := constr:(rwhen v b) in
                     let c := (eval cbv [rwhen] in c) in
                     let G' := context G[c] in
                     change G';
                     destruct b eqn:?
                | [ |- context G[rwhenl ?v ?b] ]
                  => let c := constr:(rwhenl v b) in
                     let c := (eval cbv [rwhenl] in c) in
                     let G' := context G[c] in
                     change G';
                     destruct b eqn:?
                | [ H : negb ?b = true |- _ ] => rewrite (@Bool.negb_true_iff b) in H
                | [ |- context[expr.interp ?ii ?v] ]
                  => is_var v; generalize dependent (expr.interp ii v); clear v; intro v
                | [ |- context[Z.mul_split ?a ?b ?c] ]
                  => rewrite (surjective_pairing (Z.mul_split a b c)), Z.mul_split_div, Z.mul_split_mod
                | [ |- context[Z.zselect] ] => rewrite Z.zselect_correct
                | [ |- context[Z.sub_get_borrow_full ?a ?b ?c] ]
                  => rewrite (surjective_pairing (Z.sub_get_borrow_full a b c)), Z.sub_get_borrow_full_div, Z.sub_get_borrow_full_mod
                | [ |- context[Z.sub_with_get_borrow_full ?a ?b ?c ?d] ]
                  => rewrite (surjective_pairing (Z.sub_with_get_borrow_full a b c d)), Z.sub_with_get_borrow_full_div, Z.sub_with_get_borrow_full_mod
                | [ |- context[Z.add_get_carry_full ?a ?b ?c] ]
                  => rewrite (surjective_pairing (Z.add_get_carry_full a b c)), Z.add_get_carry_full_div, Z.add_get_carry_full_mod
                | [ |- context[Z.add_with_get_carry_full ?a ?b ?c ?d] ]
                  => rewrite (surjective_pairing (Z.add_with_get_carry_full a b c d)), Z.add_with_get_carry_full_div, Z.add_with_get_carry_full_mod
                | [ |- pair _ _ = pair _ _ ] => apply f_equal2
                | [ |- ?a mod ?b = ?a' mod ?b ] => apply f_equal2; lia
                | [ |- ?a / ?b = ?a' / ?b ] => apply f_equal2; lia
                | [ |- Z.opp _ = Z.opp _ ] => apply f_equal
                end
              | match goal with
                | [ |- context[?f (list_rect _ _ _ _)] ]
                  => match f with
                     | expr.interp _ => idtac
                     | Compile.reify_expr => idtac
                     end;
                     erewrite (@push_f_list_rect _ _ f)
                       by (intros;
                           repeat first [ progress cbn [expr.interp ident.gen_interp UnderLets.interp Compile.reify_expr]
                                        | rewrite UnderLets.interp_splice ];
                           match goal with
                           | [ |- ?LHS = ?Pcons' ?x ?xs ?rec ]
                             => let LHS' := match (eval pattern x, xs, rec in LHS) with ?f _ _ _ => f end in
                                unify Pcons' LHS'; reflexivity
                           end)
                | [ |- context[?f (nat_rect _ _ _ _)] ]
                  => match f with
                     | expr.interp _ => idtac
                     | UnderLets.interp _ => idtac
                     | Compile.reify_expr => idtac
                     end;
                     erewrite (@push_f_nat_rect _ _ f)
                       by (intros;
                           repeat first [ progress cbn [expr.interp ident.gen_interp UnderLets.interp Compile.reify_expr]
                                        | rewrite UnderLets.interp_splice ];
                           match goal with
                           | [ |- ?LHS = ?PS' ?x ?rec ]
                             => let LHS' := match (eval pattern x, rec in LHS) with ?f _ _ => f end in
                                unify PS' LHS'; reflexivity
                           end)
                | [ |- ?f (list_rect _ _ _ _) = list_rect _ _ _ _ ]
                  => match f with
                     | expr.interp _ => idtac
                     | Compile.reify_expr => idtac
                     end;
                     erewrite (@push_f_list_rect _ _ f);
                     [ apply list_rect_Proper; repeat intro; try reflexivity | ]
                | [ |- ?f (nat_rect _ _ _ _) = nat_rect _ _ _ _ ]
                  => match f with
                     | expr.interp _ => idtac
                     | UnderLets.interp _ => idtac
                     | Compile.reify_expr => idtac
                     end;
                     erewrite (@push_f_nat_rect _ _ f);
                     [ apply nat_rect_Proper_nondep; repeat intro; try reflexivity | ]
                end
              | break_innermost_match_step
              | break_innermost_match_hyps_step
              | progress destruct_head'_or
              | progress cbn [expr.interp_related_gen] in *
              | match goal with
                | [ H : context[expr.interp _ (UnderLets.interp _ (?f _ _ _))]
                    |- expr.interp _ (UnderLets.interp _ (?f _ _ _)) = _ ]
                  => apply H
                | [ H : forall x1 x2, ?R1 x1 x2 -> ?R2 (?f1 x1) (?f2 x2) |- ?R2 (?f1 _) (?f2 _) ]
                  => apply H
                | [ H : forall x1 x2, ?R1 x1 x2 -> forall y1 y2, ?R2 y1 y2 -> ?R3 (?f1 x1 y1) (?f2 x2 y2) |- ?R3 (?f1 _ _) (?f2 _ _) ]
                  => apply H
                | [ H : forall x x', ?Rx x x' -> forall y y', _ -> forall z z', ?Rz z z' -> ?R (?f x y z) (?f' x' y' z') |- ?R (?f _ _ _) (?f' _ _ _) ]
                  => apply H; clear H
                | [ H : forall x x', _ -> forall y y', _ -> forall z z', _ -> forall w w', _ -> ?R (?f x y z w) (?f' x' y' z' w') |- ?R (?f _ _ _ _) (?f' _ _ _ _) ]
                  => apply H; clear H
                end
              | progress cbv [Option.bind] in *
              | match goal with
                | [ H : expr.interp_related_gen _ _ ?e ?v |- _ ] => is_var e; clear H e
                end ].

      Local Ltac interp_good_t_step_arith :=
        first [ lazymatch goal with
                | [ |- ?x = ?x ] => reflexivity
                | [ |- True ] => exact I
                | [ H : ?x = true, H' : ?x = false |- _ ] => exfalso; clear -H H'; congruence
                | [ H : true = false |- _ ]=> exfalso; clear -H; congruence
                | [ H : false = true |- _ ]=> exfalso; clear -H; congruence
                end
              | progress cbv [option_beq] in *
              | match goal with
                | [ H : context[ZRange.normalize (ZRange.normalize _)] |- _ ]
                  => rewrite ZRange.normalize_idempotent in H
                | [ |- context[ZRange.normalize (ZRange.normalize _)] ]
                  => rewrite ZRange.normalize_idempotent
                | [ |- context[ident.cast (ZRange.normalize ?r)] ]
                  => rewrite ident.cast_normalize
                | [ H : context[ident.cast (ZRange.normalize ?r)] |- _ ]
                  => rewrite ident.cast_normalize in H
                | [ H : ?T, H' : ?T |- _ ] => clear H'
                | [ H : context[is_bounded_by_bool _ (ZRange.normalize (-_))] |- _ ]
                  => rewrite ZRange.is_bounded_by_bool_move_opp_normalize in H
                | [ |- context[is_bounded_by_bool _ (ZRange.normalize (-_))] ]
                  => rewrite ZRange.is_bounded_by_bool_move_opp_normalize
                | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast _ ?r ?v] ]
                  => rewrite (@ident.cast_in_normalized_bounds _ r v) by exact H
                | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast _ (-?r) (-?v)] ]
                  => rewrite (@ident.cast_in_normalized_bounds _ (-r) (-v));
                     [ | clear -H ]
                | [ |- context[ident.cast _ ?r (-ident.cast _ (-?r) ?v)] ]
                  => rewrite (ident.cast_in_normalized_bounds r (-ident.cast _ (-r) v))
                    by (rewrite <- ZRange.is_bounded_by_bool_move_opp_normalize; apply ident.cast_always_bounded)
                | [ |- context[ident.cast _ ?r (ident.cast _ ?r _)] ]
                  => rewrite (@ident.cast_idempotent _ _ r)
                | [ H : is_bounded_by_bool _ ?r = true |- _]
                  => is_var r; unique pose proof (ZRange.is_bounded_by_normalize _ _ H)
                | [ H : lower ?x = upper ?x |- _ ] => is_var x; destruct x; cbn [upper lower] in *
                | [ H : is_bounded_by_bool ?x (ZRange.normalize r[?y~>?y]) = true |- _ ]
                  => apply ZRange.is_bounded_by_bool_normalize_constant_iff in H
                | [ H : is_bounded_by_bool ?x r[?y~>?y] = true |- _ ]
                  => apply ZRange.is_bounded_by_bool_constant_iff in H
                end
              | progress intros
              | progress subst
              | assumption
              | progress destruct_head'_and
              | progress Z.ltb_to_lt
              | progress split_andb
              | match goal with
                | [ |- ?a mod ?b = ?a' mod ?b ] => apply f_equal2; lia
                | [ |- ?a / ?b = ?a' / ?b ] => apply f_equal2; lia
                | [ |- Z.opp _ = Z.opp _ ] => apply f_equal
                end
              | break_innermost_match_step
              | break_innermost_match_hyps_step
              | progress destruct_head'_or
              | match goal with
                | [ |- context[-ident.cast _ (-?r) (-?v)] ] => rewrite (ident.cast_opp' r v)
                | [ |- context[ident.cast ?coor ?r ?v] ]
                  => is_var v;
                     pose proof (@ident.cast_always_bounded coor r v);
                     generalize dependent (ident.cast coor r v); clear v; intro v; intros
                | [ |- context[ident.cast ?coor ?r ?v] ]
                  => is_var v; is_var coor;
                     pose proof (@ident.cast_cases coor r v);
                     generalize dependent (ident.cast coor r v); intros
                | [ H : is_bounded_by_bool ?v ?r = true, H' : is_tighter_than_bool ?r ?r' = true |- _ ]
                  => unique assert (is_bounded_by_bool v r' = true) by (eauto 2 using ZRange.is_bounded_by_of_is_tighter_than)
                | [ H : is_bounded_by_bool (-?v) ?r = true, H' : (-?r <=? ?r')%zrange = true |- _ ]
                  => unique assert (is_bounded_by_bool v r' = true)
                    by (apply (@ZRange.is_bounded_by_of_is_tighter_than _ _ H');
                        rewrite <- ZRange.is_bounded_by_bool_opp, ZRange.opp_involutive; exact H)
                | [ H : is_bounded_by_bool ?v (-?r) = true |- _ ]
                  => is_var v;
                     unique assert (is_bounded_by_bool (-v) r = true)
                       by now rewrite <- ZRange.is_bounded_by_bool_move_opp_normalize, ZRange.normalize_opp
                | [ H : is_bounded_by_bool ?x r[0~>?v-1] = true |- _ ]
                  => progress (try unique assert (0 <= x); try unique assert (x <= v - 1));
                     [ clear -H; cbv [is_bounded_by_bool] in H; cbn [lower upper] in H; Bool.split_andb; Z.ltb_to_lt; lia..
                     | ]
                end
              | progress cbn [expr.interp_related_gen] in *
              | match goal with
                | [ |- context[Z.shiftl] ] => rewrite Z.shiftl_mul_pow2 by auto with zarith
                | [ |- context[Z.shiftr] ] => rewrite Z.shiftr_div_pow2 by auto with zarith
                | [ |- context[Z.shiftl _ (-_)] ] => rewrite Z.shiftl_opp_r
                | [ |- context[Z.land _ (Z.ones _)] ] => rewrite Z.land_ones by auto using Z.log2_nonneg
                | [ |- context[- - _] ] => rewrite Z.opp_involutive
                | [ H : ?x = 2^Z.log2 ?x |- context[2^Z.log2 ?x] ] => rewrite <- H
                | [ H : ?x = 2^?n |- context[Z.land _ (?x - 1)] ]
                  => rewrite !Z.sub_1_r, H, <- Z.ones_equiv, Z.land_ones by auto with zarith
                | [ |- _ = _ :> BinInt.Z ] => progress normalize_commutative_identifier Z.land Z.land_comm
                | [ H : ?x = ?y, H' : ?x <> ?y |- _ ] => exfalso; apply H', H
                | [ H : ?x = 2^Z.log2_up ?x - 1 |- context[2^Z.log2_up ?x - 1] ] => rewrite <- H
                | [ H : ?x = 2^Z.log2 ?x, H' : context[2^Z.log2 ?x] |- _ = _ :> BinInt.Z ]
                  => rewrite <- H in H'
                | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_const
                | [ H : 0 <= ?x, H' : ?x <= ?r - 1 |- context[?x mod ?r] ]
                  => rewrite (Z.mod_small x r) by (clear -H H'; lia)
                | [ H : 0 <= ?x, H' : ?x <= ?y - 1 |- context[?x / ?y] ]
                  => rewrite (Z.div_small x y) by (clear -H H'; lia)
                | [ H : ?x = 2^Z.log2 ?x |- _ ]
                  => unique assert (0 <= x) by (rewrite H; auto with zarith)
                | [ |- _ mod ?x = _ mod ?x ]
                  => progress (push_Zmod; pull_Zmod)
                | [ |- ?f (_ mod ?x) = ?f (_ mod ?x) ]
                  => progress (push_Zmod; pull_Zmod)
                | [ |- _ mod ?x = _ mod ?x ]
                  => apply f_equal2; (lia + nia)
                | _ => rewrite !Z.shiftl_mul_pow2 in * by auto using Z.log2_nonneg
                | _ => rewrite !Z.land_ones in * by auto using Z.log2_nonneg
                | H : ?x mod ?b * ?y <= _
                  |- context [ (?x * ?y) mod ?b ] =>
                  rewrite (PullPush.Z.mul_mod_l x y b);
                  rewrite (Z.mod_small (x mod b * y) b) by omega
                | [ |- context[_ - ?x + ?x] ] => rewrite !Z.sub_add
                | [ |- context[_ mod (2^_) * 2^_] ] => rewrite <- !Z.mul_mod_distr_r_full
                | [ |- context[Z.land _ (Z.ones _)] ] => rewrite !Z.land_ones by lia
                | [ |- context[2^?a * 2^?b] ] => rewrite <- !Z.pow_add_r by lia
                | [ |- context[-?x + ?y] ] => rewrite !Z.add_opp_l
                | [ |- context[?n + - ?m] ] => rewrite !Z.add_opp_r
                | [ |- context[?n - - ?m] ] => rewrite !Z.sub_opp_r
                | [ |- context[Zpos ?p * ?x / Zpos ?p] ]
                  => rewrite (@Z.div_mul' x (Zpos p)) in * by (clear; lia)
                | [ H : context[Zpos ?p * ?x / Zpos ?p] |- _ ]
                  => rewrite (@Z.div_mul' x (Zpos p)) in * by (clear; lia)
                | [ |- ?f (?a mod ?r) = ?f (?b mod ?r) ] => apply f_equal; apply f_equal2; lia
                | [ |- context[-?a - ?b + ?c] ] => replace (-a - b + c) with (c - a - b) by (clear; lia)
                | [ |- context[?x - ?y + ?z] ]
                  => lazymatch goal with
                     | [ |- context[z - y + x] ]
                       => progress replace (z - y + x) with (x - y + z) by (clear; lia)
                     end
                | [ |- context[?x - ?y - ?z] ]
                  => lazymatch goal with
                     | [ |- context[x - z - y] ]
                       => progress replace (x - z - y) with (x - y - z) by (clear; lia)
                     end
                | [ |- context[?x + ?y] ]
                  => lazymatch goal with
                     | [ |- context[y + x] ]
                       => progress replace (y + x) with (x + y) by (clear; lia)
                     end
                | [ |- context[?x + ?y + ?z] ]
                  => lazymatch goal with
                     | [ |- context[x + z + y] ]
                       => progress replace (x + z + y) with (x + y + z) by (clear; lia)
                     | [ |- context[z + x + y] ]
                       => progress replace (z + x + y) with (x + y + z) by (clear; lia)
                     | [ |- context[z + y + x] ]
                       => progress replace (z + y + x) with (x + y + z) by (clear; lia)
                     | [ |- context[y + x + z] ]
                       => progress replace (y + x + z) with (x + y + z) by (clear; lia)
                     | [ |- context[y + z + x] ]
                       => progress replace (y + z + x) with (x + y + z) by (clear; lia)
                     end
                | [ |- - ident.cast _ (-?r) (- (?x / ?y)) = ident.cast _ ?r (?x' / ?y) ]
                  => tryif constr_eq x x' then fail else replace x with x' by lia
                | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_fast
                end ].

      Local Ltac remove_casts :=
        repeat match goal with
               | [ |- context[ident.cast _ ?r (ident.cast _ ?r _)] ]
                 => rewrite ident.cast_idempotent
               | [ H : context[ident.cast _ ?r (ident.cast _ ?r _)] |- _ ]
                 => rewrite ident.cast_idempotent in H
               | [ |- context[ident.cast ?coor ?r ?v] ]
                 => is_var v;
                    pose proof (@ident.cast_always_bounded coor r v);
                    generalize dependent (ident.cast coor r v);
                    clear v; intro v; intros
               | [ H : context[ident.cast ?coor ?r ?v] |- _ ]
                 => is_var v;
                    pose proof (@ident.cast_always_bounded coor r v);
                    generalize dependent (ident.cast coor r v);
                    clear v; intro v; intros
               | [ H : context[ZRange.constant ?v] |- _ ] => unique pose proof (ZRange.is_bounded_by_bool_normalize_constant v)
               | [ H : is_tighter_than_bool (?ZRf ?r1 ?r2) (ZRange.normalize ?rs) = true,
                       H1 : is_bounded_by_bool ?v1 ?r1 = true,
                            H2 : is_bounded_by_bool ?v2 ?r2 = true
                   |- _ ]
                 => let cst := multimatch goal with
                               | [ |- context[ident.cast ?coor rs (?Zf v1 v2)] ] => constr:(ident.cast coor rs (Zf v1 v2))
                               | [ H : context[ident.cast ?coor rs (?Zf v1 v2)] |- _ ] => constr:(ident.cast coor rs (Zf v1 v2))
                               end in
                    lazymatch cst with
                    | ident.cast ?coor rs (?Zf v1 v2)
                      => let lem := lazymatch constr:((ZRf, Zf)%core) with
                                    | (ZRange.shiftl, Z.shiftl)%core => constr:(@ZRange.is_bounded_by_bool_shiftl v1 r1 v2 r2 H1 H2)
                                    | (ZRange.shiftr, Z.shiftr)%core => constr:(@ZRange.is_bounded_by_bool_shiftr v1 r1 v2 r2 H1 H2)
                                    | (ZRange.land, Z.land)%core => constr:(@ZRange.is_bounded_by_bool_land v1 r1 v2 r2 H1 H2)
                                    end in
                         try unique pose proof (@ZRange.is_bounded_by_of_is_tighter_than _ _ H _ lem);
                         clear H;
                         rewrite (@ident.cast_in_normalized_bounds coor rs (Zf v1 v2)) in * by assumption
                    end
               | [ H : is_tighter_than_bool (?ZRf ?r1) (ZRange.normalize ?rs) = true,
                       H1 : is_bounded_by_bool ?v1 ?r1 = true
                   |- _ ]
                 => let cst := multimatch goal with
                               | [ |- context[ident.cast ?coor rs (?Zf v1)] ] => constr:(ident.cast coor rs (Zf v1))
                               | [ H : context[ident.cast ?coor rs (?Zf v1)] |- _ ] => constr:(ident.cast coor rs (Zf v1))
                               end in
                    lazymatch cst with
                    | ident.cast ?coor rs (?Zf v1)
                      => let lem := lazymatch constr:((ZRf, Zf)%core) with
                                    | (ZRange.cc_m ?s, Z.cc_m ?s)%core => constr:(@ZRange.is_bounded_by_bool_cc_m s v1 r1 H1)
                                    end in
                         try unique pose proof (@ZRange.is_bounded_by_of_is_tighter_than _ _ H _ lem);
                         clear H;
                         rewrite (@ident.cast_in_normalized_bounds coor rs (Zf v1)) in * by assumption
                    end
               | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast ?coor ?r ?v] ]
                 => rewrite (@ident.cast_in_normalized_bounds coor r v) in * by assumption
               | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true, H' : context[ident.cast ?coor ?r ?v] |- _ ]
                 => rewrite (@ident.cast_in_normalized_bounds coor r v) in * by assumption
               | [ H : is_bounded_by_bool ?v ?r = true,
                       H' : is_tighter_than_bool ?r r[0~>?x-1]%zrange = true,
                            H'' : Z.eqb ?x ?m = true
                   |- context[?v mod ?m] ]
                 => unique assert (is_bounded_by_bool v r[0~>x-1] = true)
                   by (eapply ZRange.is_bounded_by_of_is_tighter_than; eassumption)
               | _ => progress Z.ltb_to_lt
               | _ => progress subst
               end.

      Local Ltac unfold_cast_lemmas :=
        repeat match goal with
               | [ H : context[ZRange.normalize (ZRange.constant _)] |- _ ]
                 => rewrite ZRange.normalize_constant in H
               | [ H : is_bounded_by_bool _ (ZRange.normalize ?r) = true |- _ ]
                 => is_var r; generalize dependent (ZRange.normalize r); clear r; intro r; intros
               | [ H : is_bounded_by_bool ?x (ZRange.constant ?x) = true |- _ ]
                 => clear H
               | [ H : is_bounded_by_bool ?x ?r = true |- _ ]
                 => is_var r; apply unfold_is_bounded_by_bool in H
               | [ H : is_bounded_by_bool ?x r[_~>_] = true |- _ ]
                 => apply unfold_is_bounded_by_bool in H
               | [ H : is_tighter_than_bool r[_~>_] r[_~>_] = true |- _ ]
                 => apply unfold_is_tighter_than_bool in H
               | _ => progress cbn [lower upper] in *
               | [ H : context[lower ?r] |- _ ]
                 => is_var r; let l := fresh "l" in let u := fresh "u" in destruct r as [l u]
               | [ H : context[upper ?r] |- _ ]
                 => is_var r; let l := fresh "l" in let u := fresh "u" in destruct r as [l u]
               | _ => progress Z.ltb_to_lt
               end.

      Local Ltac systematically_handle_casts :=
        remove_casts; unfold_cast_lemmas.

      Local Ltac fin_with_nia :=
        lazymatch goal with
        | [ |- ident.cast _ ?r _ = ident.cast _ ?r _ ] => apply f_equal; Z.div_mod_to_quot_rem; nia
        | _ => reflexivity || (Z.div_mod_to_quot_rem; (lia + nia))
        end.

      Lemma nbe_rewrite_rules_interp_good
        : rewrite_rules_interp_goodT nbe_rewrite_rules.
      Proof using Type.
        Time start_interp_good.
        Time all: try solve [ repeat interp_good_t_step_related ].
      Qed.

      Lemma arith_rewrite_rules_interp_good max_const
        : rewrite_rules_interp_goodT (arith_rewrite_rules max_const).
      Proof using Type.
        Time start_interp_good.
        Time all: try solve [ repeat interp_good_t_step_related; repeat interp_good_t_step_arith; fin_with_nia ].
      Qed.

      Lemma arith_with_casts_rewrite_rules_interp_good
        : rewrite_rules_interp_goodT arith_with_casts_rewrite_rules.
      Proof using Type.
        Time start_interp_good.
        Time all: try solve [ repeat interp_good_t_step_related; repeat interp_good_t_step_arith; fin_with_nia ].
      Qed.

      Lemma strip_literal_casts_rewrite_rules_interp_good
        : rewrite_rules_interp_goodT strip_literal_casts_rewrite_rules.
      Proof using Type.
        Time start_interp_good.
        Time all: try solve [ repeat interp_good_t_step_related; repeat interp_good_t_step_arith ].
      Qed.

      Local Ltac fancy_local_t :=
        repeat match goal with
               | [ H : forall s v v', ?invert_low s v = Some v' -> v = _,
                     H' : ?invert_low _ _ = Some _ |- _ ] => apply H in H'
               | [ H : forall s v v', ?invert_low s v = Some v' -> v = _ |- _ ]
                 => clear invert_low H
               end.
      Local Ltac more_fancy_arith_t := repeat autorewrite with zsimplify in *.

      Lemma fancy_rewrite_rules_interp_good
            (invert_low invert_high : Z -> Z -> option Z)
            (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1))
            (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2))
        : rewrite_rules_interp_goodT fancy_rewrite_rules.
      Proof using Type.
        Time start_interp_good.
        Time all: try solve [ repeat interp_good_t_step_related ].
      Qed.

      Lemma fancy_with_casts_rewrite_rules_interp_good
            (invert_low invert_high : Z -> Z -> option Z)
            (value_range flag_range : zrange)
            (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1))
            (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2))
        : rewrite_rules_interp_goodT (fancy_with_casts_rewrite_rules invert_low invert_high value_range flag_range).
      Proof using Type.
        Time start_interp_good. (* Finished transaction in 1.206 secs (1.207u,0.s) (successful) *)
        Set Ltac Profiling.
        Reset Ltac Profile.
        Time all: repeat interp_good_t_step_related. (* Finished transaction in 13.259 secs (13.128u,0.132s) (successful) *)
        Reset Ltac Profile.
        Time all: fancy_local_t. (* Finished transaction in 0.051 secs (0.052u,0.s) (successful) *)
        Time all: systematically_handle_casts. (* Finished transaction in 2.004 secs (1.952u,0.052s) (successful) *)
        Time all: try solve [ repeat interp_good_t_step_arith ]. (* Finished transaction in 44.411 secs (44.004u,0.411s) (successful) *)
      Qed.
    End with_cast.
  End RewriteRules.
End Compilers.