aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Z/InterpretationsGen.v
blob: 3b403acc879f2aa25d2ea1029388dcd0a9b962be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
(** * Interpretation of PHOAS syntax for expression trees on ℤ *)
Require Import Coq.ZArith.ZArith.
Require Import Crypto.Reflection.Z.Syntax.
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Reflection.Application.
Require Import Crypto.ModularArithmetic.ModularBaseSystemListZOperations.
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Util.Option.
Require Crypto.Util.Tuple.
Require Crypto.Util.HList.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.
Require Import Bedrock.Word.
Require Import Crypto.Util.WordUtil.
Export Reflection.Syntax.Notations.

Local Notation eta x := (fst x, snd x).
Local Notation eta3 x := (eta (fst x), snd x).
Local Notation eta4 x := (eta3 (fst x), snd x).

Module Type BitSize.
  Parameter bit_width : nat.
  Axiom bit_width_pos : (0 < Z.of_nat bit_width)%Z.
End BitSize.

Module Import Bounds.
  Record bounds := { lower : Z ; upper : Z }.
End Bounds.
Module Import BoundedWord.
  Record BoundedWordGen wordW (is_bounded_by : _ -> _ -> _ -> Prop) :=
    { lower : Z ; value : wordW ; upper : Z ;
      in_bounds : is_bounded_by value lower upper }.
  Global Arguments lower {_ _} _.
  Global Arguments value {_ _} _.
  Global Arguments upper {_ _} _.
  Global Arguments in_bounds {_ _} _.
End BoundedWord.
Module InterpretationsGen (Bit : BitSize).
  Module Z.
    Definition interp_base_type (t : base_type) : Type := interp_base_type t.
    Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
      := interp_op src dst f.
  End Z.

  Module LiftOption.
    Section lift_option.
      Context (T : Type).

      Definition interp_flat_type (t : flat_type base_type)
        := option (interp_flat_type (fun _ => T) t).

      Definition interp_base_type' (t : base_type)
        := match t with
           | TZ => option T
           end.

      Definition of' {t} : Syntax.interp_flat_type interp_base_type' t -> interp_flat_type t
        := @smart_interp_flat_map
             base_type
             interp_base_type' interp_flat_type
             (fun t => match t with TZ => fun x => x end)
             (Some tt)
             (fun _ _ x y => match x, y with
                             | Some x', Some y' => Some (x', y')
                             | _, _ => None
                             end)
             t.

      Fixpoint to' {t} : interp_flat_type t -> Syntax.interp_flat_type interp_base_type' t
        := match t return interp_flat_type t -> Syntax.interp_flat_type interp_base_type' t with
           | Tbase TZ => fun x => x
           | Unit => fun _ => tt
           | Prod A B => fun x => (@to' A (option_map (@fst _ _) x),
                                   @to' B (option_map (@snd _ _) x))
           end.

      Definition lift_relation {interp_base_type2}
                 (R : forall t, T -> interp_base_type2 t -> Prop)
        : forall t, interp_base_type' t -> interp_base_type2 t -> Prop
        := fun t x y => match of' (t:=Tbase t) x with
                        | Some x' => R t x' y
                        | None => True
                        end.

      Definition Some {t} (x : T) : interp_base_type' t
        := match t with
           | TZ => Some x
           end.
    End lift_option.
    Global Arguments of' {T t} _.
    Global Arguments to' {T t} _.
    Global Arguments Some {T t} _.
    Global Arguments lift_relation {T _} R _ _ _.

    Section lift_option2.
      Context (T U : Type).
      Definition lift_relation2 (R : T -> U -> Prop)
        : forall t, interp_base_type' T t -> interp_base_type' U t -> Prop
        := fun t x y => match of' (t:=Tbase t) x, of' (t:=Tbase t) y with
                        | Datatypes.Some x', Datatypes.Some y' => R x' y'
                        | None, None => True
                        | _, _ => False
                        end.
    End lift_option2.
    Global Arguments lift_relation2 {T U} R _ _ _.
  End LiftOption.

  Module WordW.
    Include Bit.
    Definition wordW := word bit_width.
    Delimit Scope wordW_scope with wordW.
    Bind Scope wordW_scope with wordW.

    Definition wordWToZ (x : wordW) : Z
      := Z.of_N (wordToN x).
    Definition ZToWordW (x : Z) : wordW
      := NToWord _ (Z.to_N x).

    Ltac fold_WordW_Z :=
      repeat match goal with
             | [ |- context G[NToWord bit_width (Z.to_N ?x)] ]
               => let G' := context G [ZToWordW x] in change G'
             | [ |- context G[Z.of_N (wordToN ?x)] ]
               => let G' := context G [wordWToZ x] in change G'
             | [ H : context G[NToWord bit_width (Z.to_N ?x)] |- _ ]
               => let G' := context G [ZToWordW x] in change G' in H
             | [ H : context G[Z.of_N (wordToN ?x)] |- _ ]
               => let G' := context G [wordWToZ x] in change G' in H
             end.

    Create HintDb push_wordWToZ discriminated.
    Hint Extern 1 => progress autorewrite with push_wordWToZ in * : push_wordWToZ.

    Local Hint Resolve bit_width_pos : zarith.

    Ltac arith := solve [ omega | auto using bit_width_pos with zarith ].

    Lemma wordWToZ_bound w : (0 <= wordWToZ w < 2^Z.of_nat bit_width)%Z.
    Proof.
      pose proof (wordToNat_bound w) as H.
      apply Nat2Z.inj_lt in H.
      rewrite Zpow_pow2, Z2Nat.id in H by (apply Z.pow_nonneg; omega).
      unfold wordWToZ.
      rewrite wordToN_nat, nat_N_Z; omega.
    Qed.

    Lemma wordWToZ_log_bound w : (0 <= wordWToZ w /\ Z.log2 (wordWToZ w) < Z.of_nat bit_width)%Z.
    Proof.
      pose proof (wordWToZ_bound w) as H.
      destruct (Z_zerop (wordWToZ w)) as [H'|H'].
      { rewrite H'; simpl; split; auto with zarith. }
      { split; [ | apply Z.log2_lt_pow2 ]; omega. }
    Qed.

    Lemma ZToWordW_wordWToZ (x : wordW) : ZToWordW (wordWToZ x) = x.
    Proof.
      unfold ZToWordW, wordWToZ.
      rewrite N2Z.id, NToWord_wordToN.
      reflexivity.
    Qed.
    Hint Rewrite ZToWordW_wordWToZ : push_wordWToZ.

    Lemma wordWToZ_ZToWordW (x : Z) : (0 <= x < 2^Z.of_nat bit_width)%Z -> wordWToZ (ZToWordW x) = x.
    Proof.
      unfold ZToWordW, wordWToZ; intros [H0 H1].
      pose proof H1 as H1'; apply Z2Nat.inj_lt in H1'; [ | omega.. ].
      rewrite <- Z.pow_Z2N_Zpow in H1' by omega.
      replace (Z.to_nat 2) with 2%nat in H1' by reflexivity.
      rewrite wordToN_NToWord_idempotent, Z2N.id by (omega || auto using bound_check_nat_N).
      reflexivity.
    Qed.
    Hint Rewrite wordWToZ_ZToWordW using arith : push_wordWToZ.

    Definition add : wordW -> wordW -> wordW := @wplus _.
    Definition sub : wordW -> wordW -> wordW := @wminus _.
    Definition mul : wordW -> wordW -> wordW := @wmult _.
    Definition shl : wordW -> wordW -> wordW := @wordBin N.shiftl _.
    Definition shr : wordW -> wordW -> wordW := @wordBin N.shiftr _.
    Definition land : wordW -> wordW -> wordW := @wand _.
    Definition lor : wordW -> wordW -> wordW := @wor _.
    Definition neg (int_width : Z) : wordW -> wordW (* TODO: Is this right? *)
      := fun x => ZToWordW (ModularBaseSystemListZOperations.neg int_width (wordWToZ x)).
    Definition cmovne : wordW -> wordW -> wordW -> wordW -> wordW (* TODO: Is this right? *)
      := fun x y z w => ZToWordW (ModularBaseSystemListZOperations.cmovne (wordWToZ x) (wordWToZ y) (wordWToZ z) (wordWToZ w)).
    Definition cmovle : wordW -> wordW -> wordW -> wordW -> wordW (* TODO: Is this right? *)
      := fun x y z w => ZToWordW (ModularBaseSystemListZOperations.cmovl (wordWToZ x) (wordWToZ y) (wordWToZ z) (wordWToZ w)).

    Infix "+" := add : wordW_scope.
    Infix "-" := sub : wordW_scope.
    Infix "*" := mul : wordW_scope.
    Infix "<<" := shl : wordW_scope.
    Infix ">>" := shr : wordW_scope.
    Infix "&'" := land : wordW_scope.

    (*Local*) Hint Resolve <- Z.log2_lt_pow2_alt : zarith.
    Local Hint Resolve eq_refl : zarith.
    Local Ltac wWToZ_t :=
      intros;
      try match goal with
          | [ |- ?wordToZ ?op = _ ]
            => let op' := head op in
               cbv [wordToZ op'] in *
          end;
      autorewrite with push_Zto_N push_Zof_N push_wordToN; try reflexivity.
    Local Ltac wWToZ_extra_t :=
      repeat first [ reflexivity
                   | progress cbv [ModularBaseSystemListZOperations.neg ModularBaseSystemListZOperations.cmovne ModularBaseSystemListZOperations.cmovl] in *
                   | progress break_match
                   | progress fold_WordW_Z
                   | progress intros
                   | progress autorewrite with push_Zto_N push_Zof_N push_wordToN push_wordWToZ ].

    Local Notation bounds_statement wop Zop
      := ((0 <= Zop -> Z.log2 Zop < Z.of_nat bit_width -> wordWToZ wop = Zop)%Z).
    Local Notation bounds_statement_tuple wop Zop
      := ((HList.hlist (fun v => 0 <= v /\ Z.log2 v < Z.of_nat bit_width) Zop -> Tuple.map wordWToZ wop = Zop)%Z).
    Local Notation bounds_1statement wop Zop
      := (forall x,
             bounds_statement (wop x) (Zop (wordWToZ x))).
    Local Notation bounds_2statement wop Zop
      := (forall x y,
             bounds_statement (wop x y) (Zop (wordWToZ x) (wordWToZ y))).
    Local Notation bounds_4statement wop Zop
      := (forall x y z w,
             bounds_statement (wop x y z w) (Zop (wordWToZ x) (wordWToZ y) (wordWToZ z) (wordWToZ w))).

    Lemma wordWToZ_add : bounds_2statement add Z.add. Proof. wWToZ_t. Qed.
    Lemma wordWToZ_sub : bounds_2statement sub Z.sub. Proof. wWToZ_t. Qed.
    Lemma wordWToZ_mul : bounds_2statement mul Z.mul. Proof. wWToZ_t. Qed.
    Lemma wordWToZ_shl : bounds_2statement shl Z.shiftl.
    Proof.
      wWToZ_t; wWToZ_extra_t; unfold wordWToZ, wordBin.
      rewrite wordToN_NToWord_idempotent; [rewrite <- Z_inj_shiftl; reflexivity|].
      apply N2Z.inj_lt.
      rewrite Z_inj_shiftl.
      destruct (Z.lt_ge_cases 0 ((wordWToZ x) << (wordWToZ y)))%Z;
        [|eapply Z.le_lt_trans; [|apply N2Z.inj_lt, Npow2_gt0]; assumption].
      rewrite Npow2_N, N2Z.inj_pow, ?nat_N_Z.
      apply Z.log2_lt_pow2; assumption.
    Qed.

    Lemma wordWToZ_shr : bounds_2statement shr Z.shiftr.
    Proof.
      wWToZ_t; wWToZ_extra_t; unfold wordWToZ, wordBin.
      rewrite wordToN_NToWord_idempotent; [rewrite <- Z_inj_shiftr; reflexivity|].
      apply N2Z.inj_lt.
      rewrite Z_inj_shiftr.
      destruct (Z.lt_ge_cases 0 ((wordWToZ x) >> (wordWToZ y)))%Z;
        [|eapply Z.le_lt_trans; [|apply N2Z.inj_lt, Npow2_gt0]; assumption].
      rewrite Npow2_N, N2Z.inj_pow, nat_N_Z.
      apply Z.log2_lt_pow2; assumption.
    Qed.

    Lemma wordWToZ_land : bounds_2statement land Z.land.
    Proof. wWToZ_t. Qed.
    Lemma wordWToZ_lor : bounds_2statement lor Z.lor.
    Proof. wWToZ_t. Qed.
    Lemma wordWToZ_neg int_width : bounds_1statement (neg int_width) (ModularBaseSystemListZOperations.neg int_width).
    Proof. wWToZ_t; wWToZ_extra_t. Qed.
    Lemma wordWToZ_cmovne : bounds_4statement cmovne ModularBaseSystemListZOperations.cmovne.
    Proof. wWToZ_t; wWToZ_extra_t. Qed.
    Lemma wordWToZ_cmovle : bounds_4statement cmovle ModularBaseSystemListZOperations.cmovl.
    Proof. wWToZ_t; wWToZ_extra_t. Qed.

    Definition interp_base_type (t : base_type) : Type
      := match t with
         | TZ => wordW
         end.
    Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
      := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
         | OpConst v => fun _ => ZToWordW v
         | Add => fun xy => fst xy + snd xy
         | Sub => fun xy => fst xy - snd xy
         | Mul => fun xy => fst xy * snd xy
         | Shl => fun xy => fst xy << snd xy
         | Shr => fun xy => fst xy >> snd xy
         | Land => fun xy => land (fst xy) (snd xy)
         | Lor => fun xy => lor (fst xy) (snd xy)
         | Neg int_width => fun x => neg int_width x
         | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
         | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
         end%wordW.

    Definition of_Z ty : Z.interp_base_type ty -> interp_base_type ty
      := match ty return Z.interp_base_type ty -> interp_base_type ty with
         | TZ => ZToWordW
         end.
    Definition to_Z ty : interp_base_type ty -> Z.interp_base_type ty
      := match ty return interp_base_type ty -> Z.interp_base_type ty with
         | TZ => wordWToZ
         end.

    Module Export Rewrites.
      Ltac wordW_util_arith := omega.

      Hint Rewrite wordWToZ_add using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_add using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_sub using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_sub using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_mul using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_mul using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_shl using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_shl using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_shr using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_shr using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_land using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_land using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_lor using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_lor using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_neg using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_neg using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_cmovne using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_cmovne using wordW_util_arith : pull_wordWToZ.
      Hint Rewrite wordWToZ_cmovle using wordW_util_arith : push_wordWToZ.
      Hint Rewrite <- wordWToZ_cmovle using wordW_util_arith : pull_wordWToZ.
    End Rewrites.
  End WordW.

  Module ZBounds.
    Export Bounds.
    Definition bounds := bounds.
    Bind Scope bounds_scope with bounds.
    Definition t := option bounds. (* TODO?: Separate out the bounds computation from the overflow computation? e.g., have [safety := in_bounds | overflow] and [t := bounds * safety]? *)
    Bind Scope bounds_scope with t.
    Local Coercion Z.of_nat : nat >-> Z.
    Definition wordWToBounds (x : WordW.wordW) : t
      := let v := WordW.wordWToZ x in Some {| lower := v ; upper := v |}.
    Definition SmartBuildBounds (l u : Z)
      := if ((0 <=? l) && (Z.log2 u <? WordW.bit_width))%Z%bool
         then Some {| lower := l ; upper := u |}
         else None.
    Definition t_map1 (f : bounds -> bounds) (x : t)
      := match x with
         | Some x
           => match f x with
              | Build_bounds l u
                => SmartBuildBounds l u
              end
         | _ => None
         end%Z.
    Definition t_map2 (f : bounds -> bounds -> bounds) (x y : t)
      := match x, y with
         | Some x, Some y
           => match f x y with
              | Build_bounds l u
                => SmartBuildBounds l u
              end
         | _, _ => None
         end%Z.
    Definition t_map4 (f : bounds -> bounds -> bounds -> bounds -> bounds) (x y z w : t)
      := match x, y, z, w with
         | Some x, Some y, Some z, Some w
           => match f x y z w with
              | Build_bounds l u
                => SmartBuildBounds l u
              end
         | _, _, _, _ => None
         end%Z.
    Definition add' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := lx + ly ; upper := ux + uy |}.
    Definition add : t -> t -> t := t_map2 add'.
    Definition sub' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := lx - uy ; upper := ux - ly |}.
    Definition sub : t -> t -> t := t_map2 sub'.
    Definition mul' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := lx * ly ; upper := ux * uy |}.
    Definition mul : t -> t -> t := t_map2 mul'.
    Definition shl' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := lx << ly ; upper := ux << uy |}.
    Definition shl : t -> t -> t := t_map2 shl'.
    Definition shr' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := lx >> uy ; upper := ux >> ly |}.
    Definition shr : t -> t -> t := t_map2 shr'.
    Definition land' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in {| lower := 0 ; upper := Z.min ux uy |}.
    Definition land : t -> t -> t := t_map2 land'.
    Definition lor' : bounds -> bounds -> bounds
      := fun x y => let (lx, ux) := x in let (ly, uy) := y in
                                         {| lower := Z.max lx ly;
                                            upper := 2^(Z.max (Z.log2_up (ux+1)) (Z.log2_up (uy+1))) - 1 |}.
    Definition lor : t -> t -> t := t_map2 lor'.
    Definition neg' (int_width : Z) : bounds -> bounds
      := fun v
         => let (lb, ub) := v in
            let might_be_one := ((lb <=? 1) && (1 <=? ub))%Z%bool in
            let must_be_one := ((lb =? 1) && (ub =? 1))%Z%bool in
            if must_be_one
            then {| lower := Z.ones int_width ; upper := Z.ones int_width |}
            else if might_be_one
                 then {| lower := 0 ; upper := Z.ones int_width |}
                 else {| lower := 0 ; upper := 0 |}.
    Definition neg (int_width : Z) : t -> t
      := fun v
         => if ((0 <=? int_width) && (int_width <=? WordW.bit_width))%Z%bool
            then t_map1 (neg' int_width) v
            else None.
    Definition cmovne' (r1 r2 : bounds) : bounds
      := let (lr1, ur1) := r1 in let (lr2, ur2) := r2 in {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}.
    Definition cmovne (x y r1 r2 : t) : t := t_map4 (fun _ _ => cmovne') x y r1 r2.
    Definition cmovle' (r1 r2 : bounds) : bounds
      := let (lr1, ur1) := r1 in let (lr2, ur2) := r2 in {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}.
    Definition cmovle (x y r1 r2 : t) : t := t_map4 (fun _ _ => cmovle') x y r1 r2.

    Module Export Notations.
      Delimit Scope bounds_scope with bounds.
      Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounds_scope.
      Infix "+" := add : bounds_scope.
      Infix "-" := sub : bounds_scope.
      Infix "*" := mul : bounds_scope.
      Infix "<<" := shl : bounds_scope.
      Infix ">>" := shr : bounds_scope.
      Infix "&'" := land : bounds_scope.
    End Notations.

    Definition interp_base_type (ty : base_type) : Type
      := LiftOption.interp_base_type' bounds ty.
    Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
      := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
         | OpConst v => fun _ => SmartBuildBounds v v
         | Add => fun xy => fst xy + snd xy
         | Sub => fun xy => fst xy - snd xy
         | Mul => fun xy => fst xy * snd xy
         | Shl => fun xy => fst xy << snd xy
         | Shr => fun xy => fst xy >> snd xy
         | Land => fun xy => land (fst xy) (snd xy)
         | Lor => fun xy => lor (fst xy) (snd xy)
         | Neg int_width => fun x => neg int_width x
         | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
         | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
         end%bounds.

    Definition of_wordW ty : WordW.interp_base_type ty -> interp_base_type ty
      := match ty return WordW.interp_base_type ty -> interp_base_type ty with
         | TZ => wordWToBounds
         end.

    Ltac inversion_bounds :=
      let lower := (eval cbv [lower] in (fun x => lower x)) in
      let upper := (eval cbv [upper] in (fun y => upper y)) in
      repeat match goal with
             | [ H : _ = _ :> bounds |- _ ]
               => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H;
                  cbv beta iota in *
             | [ H : _ = _ :> t |- _ ]
               => unfold t in H; inversion_option
             end.
  End ZBounds.

  Module BoundedWordW.
    Export BoundedWord.
    Local Notation is_bounded_by value lower upper
      := ((0 <= lower /\ lower <= WordW.wordWToZ value <= upper /\ Z.log2 upper < Z.of_nat WordW.bit_width)%Z)
           (only parsing).
    Definition BoundedWord := BoundedWordGen WordW.wordW (fun value lower upper => is_bounded_by value lower upper).
    Bind Scope bounded_word_scope with BoundedWord.
    Definition t := option BoundedWord.
    Bind Scope bounded_word_scope with t.
    Local Coercion Z.of_nat : nat >-> Z.

    Ltac inversion_BoundedWord :=
      repeat match goal with
             | _ => progress subst
             | [ H : _ = _ :> BoundedWord |- _ ]
               => pose proof (f_equal lower H);
                  pose proof (f_equal upper H);
                  pose proof (f_equal value H);
                  clear H
             end.

    Definition interp_base_type (ty : base_type)
      := LiftOption.interp_base_type' BoundedWord ty.

    Definition wordWToBoundedWord (x : WordW.wordW) : t.
    Proof.
      refine (let v := WordW.wordWToZ x in
              match Sumbool.sumbool_of_bool (0 <=? v)%Z, Sumbool.sumbool_of_bool (Z.log2 v <? Z.of_nat WordW.bit_width)%Z with
              | left Hl, left Hu
                => Some {| lower := WordW.wordWToZ x ; value := x ; upper := WordW.wordWToZ x |}
              | _, _ => None
              end).
      subst v.
      abstract (Z.ltb_to_lt; repeat split; (assumption || reflexivity)).
    Defined.

    Definition boundedWordToWordW (x : t) : WordW.wordW
      := match x with
         | Some x' => value x'
         | None => WordW.ZToWordW 0
         end.

    Definition of_wordW ty : WordW.interp_base_type ty -> interp_base_type ty
      := match ty return WordW.interp_base_type ty -> interp_base_type ty with
         | TZ => wordWToBoundedWord
         end.
    Definition to_wordW ty : interp_base_type ty -> WordW.interp_base_type ty
      := match ty return interp_base_type ty -> WordW.interp_base_type ty with
         | TZ => boundedWordToWordW
         end.

    (** XXX FIXME(jgross) This is going to break horribly if we need to support any types other than [Z] *)
    Definition to_wordW' ty : BoundedWord -> WordW.interp_base_type ty
      := match ty return BoundedWord -> WordW.interp_base_type ty with
         | TZ => fun x => boundedWordToWordW (Some x)
         end.

    Definition to_Z' ty : BoundedWord -> Z.interp_base_type ty
      := fun x => WordW.to_Z _ (to_wordW' _ x).

    Definition of_Z ty : Z.interp_base_type ty -> interp_base_type ty
      := fun x => of_wordW _ (WordW.of_Z _ x).
    Definition to_Z ty : interp_base_type ty -> Z.interp_base_type ty
      := fun x => WordW.to_Z _ (to_wordW _ x).

    Definition BoundedWordToBounds (x : BoundedWord) : ZBounds.bounds
      := {| Bounds.lower := lower x ; Bounds.upper := upper x |}.

    Definition to_bounds' : t -> ZBounds.t
      := option_map BoundedWordToBounds.

    Definition to_bounds ty : interp_base_type ty -> ZBounds.interp_base_type ty
      := match ty return interp_base_type ty -> ZBounds.interp_base_type ty with
         | TZ => to_bounds'
         end.

    Definition SmartBuildBoundedWord (v : Z) : t
      := if ((0 <=? v) && (Z.log2 v <? WordW.bit_width))%Z%bool
         then of_Z TZ v
         else None.

    Definition t_map1
               (opW : WordW.wordW -> WordW.wordW)
               (opB : ZBounds.t -> ZBounds.t)
               (pf : forall x l u,
                   opB (Some (BoundedWordToBounds x))
                   = Some {| Bounds.lower := l ; Bounds.upper := u |}
                   -> let val :=  opW (value x) in
                      is_bounded_by val l u)
      : t -> t
      := fun x : t
         => match x with
            | Some x
              => match opB (Some (BoundedWordToBounds x))
                       as bop return opB (Some (BoundedWordToBounds x)) = bop -> t
                 with
                 | Some (Bounds.Build_bounds l u)
                   => fun Heq => Some {| lower := l ; value := opW (value x) ; upper := u;
                                         in_bounds := pf _ _ _ Heq |}
                 | None => fun _ => None
                 end eq_refl
            | _ => None
            end.

    Definition t_map2
               (opW : WordW.wordW -> WordW.wordW -> WordW.wordW)
               (opB : ZBounds.t -> ZBounds.t -> ZBounds.t)
               (pf : forall x y l u,
                   opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                   = Some {| Bounds.lower := l ; Bounds.upper := u |}
                   -> let val :=  opW (value x) (value y) in
                      is_bounded_by val l u)
      : t -> t -> t
      := fun x y : t
         => match x, y with
            | Some x, Some y
              => match opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                       as bop return opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) = bop -> t
                 with
                 | Some (Bounds.Build_bounds l u)
                   => fun Heq => Some {| lower := l ; value := opW (value x) (value y) ; upper := u;
                                         in_bounds := pf _ _ _ _ Heq |}
                 | None => fun _ => None
                 end eq_refl
            | _, _ => None
            end.

    Definition t_map4
               (opW : WordW.wordW -> WordW.wordW -> WordW.wordW -> WordW.wordW -> WordW.wordW)
               (opB : ZBounds.t -> ZBounds.t -> ZBounds.t -> ZBounds.t -> ZBounds.t)
               (pf : forall x y z w l u,
                   opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                   = Some {| Bounds.lower := l ; Bounds.upper := u |}
                   -> let val :=  opW (value x) (value y) (value z) (value w) in
                      is_bounded_by val l u)
      : t -> t -> t -> t -> t
      := fun x y z w : t
         => match x, y, z, w with
            | Some x, Some y, Some z, Some w
              => match opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                           (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                       as bop return opB _ _ _ _ = bop -> t
                 with
                 | Some (Bounds.Build_bounds l u)
                   => fun Heq => Some {| lower := l ; value := opW (value x) (value y) (value z) (value w) ; upper := u;
                                         in_bounds := pf _ _ _ _ _ _ Heq |}
                 | None => fun _ => None
                 end eq_refl
            | _, _, _, _ => None
            end.

    Local Opaque WordW.bit_width.
    Hint Resolve Z.ones_nonneg : zarith.
    Local Ltac t_prestart :=
      repeat first [ match goal with
                     | [ |- forall x l u, ?opB (Some (BoundedWordToBounds x)) = Some _ -> let val := ?opW (value x) in _ ]
                       => let opB' := head opB in let opW' := head opW in progress (try unfold opB'; try unfold opW')
                     | [ |- forall x y l u, ?opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) = Some _ -> let val := ?opW (value x) (value y) in _ ]
                       => progress (try unfold opB; try unfold opW)
                     | [ |- forall x y z w l u, ?opB _ _ _ _ = Some _ -> let val := ?opW (value x) (value y) (value z) (value w) in _ ]
                       => progress (try unfold opB; try unfold opW)
                     | [ |- appcontext[ZBounds.t_map1 ?op] ] => let op' := head op in unfold op'
                     | [ |- appcontext[ZBounds.t_map2 ?op] ] => let op' := head op in unfold op'
                     | [ |- appcontext[?op (Bounds.Build_bounds _ _)] ] => let op' := head op in unfold op'
                     | [ |- appcontext[?op (Bounds.Build_bounds _ _) (Bounds.Build_bounds _ _)] ] => unfold op
                     end
                   | progress cbv [BoundedWordToBounds ZBounds.SmartBuildBounds cmovne cmovl ModularBaseSystemListZOperations.neg] in *
                   | progress break_match
                   | progress break_match_hyps
                   | progress intros
                   | progress subst
                   | progress ZBounds.inversion_bounds
                   | progress inversion_option
                   | progress WordW.fold_WordW_Z
                   | progress autorewrite with bool_congr_setoid in *
                   | progress destruct_head' and
                   | progress Z.ltb_to_lt
                   | assumption
                   | progress destruct_head' BoundedWord; simpl in *
                   | progress autorewrite with push_wordWToZ
                   | progress repeat apply conj
                   | solve [ WordW.arith ]
                   | progress destruct_head' or ].
    Local Ltac t_start :=
      repeat first [ progress t_prestart
                   | match goal with
                     | [ |- appcontext[Z.min ?x ?y] ]
                       => apply (Z.min_case_strong x y)
                     | [ |- appcontext[Z.max ?x ?y] ]
                       => apply (Z.max_case_strong x y)
                     end ].

    Local Hint Resolve WordW.bit_width_pos : zarith.
    Local Hint Extern 1 (Z.log2 _ < _)%Z => eapply Z.le_lt_trans; [ eapply Z.log2_le_mono; eassumption | eassumption ] : zarith.
    (* Local *) Hint Resolve <- Z.log2_lt_pow2_alt : zarith.


    Definition add : t -> t -> t.
    Proof.
      refine (t_map2 WordW.add ZBounds.add _);
        abstract (t_start; eapply add_valid_update; eauto).
    Defined.

    Definition sub : t -> t -> t.
    Proof.
      refine (t_map2 WordW.sub ZBounds.sub _);
        abstract (t_start; eapply sub_valid_update; eauto).
    Defined.

    Definition mul : t -> t -> t.
    Proof.
      refine (t_map2 WordW.mul ZBounds.mul _);
        abstract (t_start; eapply mul_valid_update; eauto).
    Defined.

    Definition land : t -> t -> t.
    Proof.
      refine (t_map2 WordW.land ZBounds.land _);
        abstract (t_prestart; eapply land_valid_update; eauto).
    Defined.

    Definition lor : t -> t -> t.
    Proof.
      refine (t_map2 WordW.lor ZBounds.lor _);
        abstract (t_prestart; eapply lor_valid_update; eauto).
    Defined.

    Definition shl : t -> t -> t.
    Proof.
      refine (t_map2 WordW.shl ZBounds.shl _);
        abstract (t_start; eapply shl_valid_update; eauto).
    Defined.

    Definition shr : t -> t -> t.
    Proof.
      refine (t_map2 WordW.shr ZBounds.shr _);
        abstract (t_start; eapply shr_valid_update; eauto).
    Defined.

    Definition neg (int_width : Z) : t -> t.
    Proof. refine (t_map1 (WordW.neg int_width) (ZBounds.neg int_width) _); abstract t_start. Defined.

    Definition cmovne : t -> t -> t -> t -> t.
    Proof. refine (t_map4 WordW.cmovne ZBounds.cmovne _); abstract t_start. Defined.

    Definition cmovle : t -> t -> t -> t -> t.
    Proof. refine (t_map4 WordW.cmovle ZBounds.cmovle _); abstract t_start. Defined.

    Local Notation unop_correct op opW opB :=
      (forall x v, op (Some x) = Some v
                   -> value v = opW (value x)
                      /\ Some (BoundedWordToBounds v) = opB (Some (BoundedWordToBounds x)))
        (only parsing).

    Local Notation binop_correct op opW opB :=
      (forall x y v, op (Some x) (Some y) = Some v
                     -> value v = opW (value x) (value y)
                        /\ Some (BoundedWordToBounds v) = opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)))
        (only parsing).

    Local Notation op4_correct op opW opB :=
      (forall x y z w v, op (Some x) (Some y) (Some z) (Some w) = Some v
                         -> value v = opW (value x) (value y) (value z) (value w)
                            /\ Some (BoundedWordToBounds v) = opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                                                                  (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w)))
        (only parsing).

    Lemma t_map1_correct opW opB pf
      : unop_correct (t_map1 opW opB pf) opW opB.
    Proof.
      intros ?? H.
      unfold t_map1 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Lemma t_map2_correct opW opB pf
      : binop_correct (t_map2 opW opB pf) opW opB.
    Proof.
      intros ??? H.
      unfold t_map2 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Lemma t_map4_correct opW opB pf
      : op4_correct (t_map4 opW opB pf) opW opB.
    Proof.
      intros ????? H.
      unfold t_map4 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Local Notation unop_correct_None op opB :=
      (forall x, op (Some x) = None -> opB (Some (BoundedWordToBounds x)) = None)
        (only parsing).

    Local Notation binop_correct_None op opB :=
      (forall x y, op (Some x) (Some y) = None -> opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) = None)
        (only parsing).

    Local Notation op4_correct_None op opB :=
      (forall x y z w, op (Some x) (Some y) (Some z) (Some w) = None
                       -> opB (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                              (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                          = None)
        (only parsing).

    Lemma t_map1_correct_None opW opB pf
      : unop_correct_None (t_map1 opW opB pf) opB.
    Proof.
      intros ? H.
      unfold t_map1 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Lemma t_map2_correct_None opW opB pf
      : binop_correct_None (t_map2 opW opB pf) opB.
    Proof.
      intros ?? H.
      unfold t_map2 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Lemma t_map4_correct_None opW opB pf
      : op4_correct_None (t_map4 opW opB pf) opB.
    Proof.
      intros ???? H.
      unfold t_map4 in H; convoy_destruct_in H; destruct_head' ZBounds.bounds;
        unfold BoundedWordToBounds in *;
        inversion_option; subst; simpl.
      eauto.
    Qed.

    Module Export Notations.
      Delimit Scope bounded_word_scope with bounded_word.
      Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounded_word_scope.
      Infix "+" := add : bounded_word_scope.
      Infix "-" := sub : bounded_word_scope.
      Infix "*" := mul : bounded_word_scope.
      Infix "<<" := shl : bounded_word_scope.
      Infix ">>" := shr : bounded_word_scope.
      Infix "&'" := land : bounded_word_scope.
    End Notations.

    Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
      := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
         | OpConst v => fun _ => SmartBuildBoundedWord v
         | Add => fun xy => fst xy + snd xy
         | Sub => fun xy => fst xy - snd xy
         | Mul => fun xy => fst xy * snd xy
         | Shl => fun xy => fst xy << snd xy
         | Shr => fun xy => fst xy >> snd xy
         | Land => fun xy => land (fst xy) (snd xy)
         | Lor => fun xy => lor (fst xy) (snd xy)
         | Neg int_width => fun x => neg int_width x
         | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
         | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
         end%bounded_word.
  End BoundedWordW.

  Module ZBoundsTuple.
    Definition interp_flat_type (t : flat_type base_type)
      := LiftOption.interp_flat_type ZBounds.bounds t.

    Definition of_ZBounds {ty} : Syntax.interp_flat_type ZBounds.interp_base_type ty -> interp_flat_type ty
      := @LiftOption.of' ZBounds.bounds ty.
    Definition to_ZBounds {ty} : interp_flat_type ty -> Syntax.interp_flat_type ZBounds.interp_base_type ty
      := @LiftOption.to' ZBounds.bounds ty.
  End ZBoundsTuple.

  Module BoundedWordWTuple.
    Definition interp_flat_type (t : flat_type base_type)
      := LiftOption.interp_flat_type BoundedWordW.BoundedWord t.

    Definition of_BoundedWordW {ty} : Syntax.interp_flat_type BoundedWordW.interp_base_type ty -> interp_flat_type ty
      := @LiftOption.of' BoundedWordW.BoundedWord ty.
    Definition to_BoundedWordW {ty} : interp_flat_type ty -> Syntax.interp_flat_type BoundedWordW.interp_base_type ty
      := @LiftOption.to' BoundedWordW.BoundedWord ty.
  End BoundedWordWTuple.
End InterpretationsGen.