aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Z/Interpretations.v
blob: b5b4cb9d5deea4645b34ae5a7aec66685ac9a065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
(** * Interpretation of PHOAS syntax for expression trees on ℤ *)
Require Import Coq.ZArith.ZArith.
Require Import Crypto.Reflection.Z.Syntax.
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Reflection.Application.
Require Import Crypto.ModularArithmetic.ModularBaseSystemListZOperations.
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.
Require Import Bedrock.Word.
Require Import Crypto.Util.WordUtil.
Export Reflection.Syntax.Notations.

Local Notation eta x := (fst x, snd x).
Local Notation eta3 x := (eta (fst x), snd x).
Local Notation eta4 x := (eta3 (fst x), snd x).

Module Z.
  Definition interp_base_type (t : base_type) : Type := interp_base_type t.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := interp_op src dst f.
End Z.

Module LiftOption.
  Section lift_option.
    Context (T : Type).

    Definition interp_flat_type (t : flat_type base_type)
      := option (interp_flat_type (fun _ => T) t).

    Definition interp_base_type' (t : base_type)
      := match t with
         | TZ => option T
         end.

    Definition of' {t} : Syntax.interp_flat_type interp_base_type' t -> interp_flat_type t
      := @smart_interp_flat_map
           base_type
           interp_base_type' interp_flat_type
           (fun t => match t with TZ => fun x => x end)
           (fun _ _ x y => match x, y with
                           | Some x', Some y' => Some (x', y')
                           | _, _ => None
                           end)
           t.

    Fixpoint to' {t} : interp_flat_type t -> Syntax.interp_flat_type interp_base_type' t
      := match t return interp_flat_type t -> Syntax.interp_flat_type interp_base_type' t with
         | Tbase TZ => fun x => x
         | Prod A B => fun x => (@to' A (option_map (@fst _ _) x),
                                 @to' B (option_map (@snd _ _) x))
         end.

    Definition lift_relation {interp_base_type2}
               (R : forall t, T -> interp_base_type2 t -> Prop)
      : forall t, interp_base_type' t -> interp_base_type2 t -> Prop
      := fun t x y => match of' (t:=Tbase t) x with
                      | Some x' => R t x' y
                      | None => True
                      end.

    Definition Some {t} (x : T) : interp_base_type' t
      := match t with
         | TZ => Some x
         end.
  End lift_option.
  Global Arguments of' {T t} _.
  Global Arguments to' {T t} _.
  Global Arguments Some {T t} _.
  Global Arguments lift_relation {T _} R _ _ _.

  Section lift_option2.
    Context (T U : Type).
    Definition lift_relation2 (R : T -> U -> Prop)
      : forall t, interp_base_type' T t -> interp_base_type' U t -> Prop
      := fun t x y => match of' (t:=Tbase t) x, of' (t:=Tbase t) y with
                      | Datatypes.Some x', Datatypes.Some y' => R x' y'
                      | None, None => True
                      | _, _ => False
                      end.
  End lift_option2.
  Global Arguments lift_relation2 {T U} R _ _ _.
End LiftOption.

Module Word64.
  Definition bit_width : nat := 64.
  Definition word64 := word bit_width.
  Delimit Scope word64_scope with word64.
  Bind Scope word64_scope with word64.

  Definition word64ToZ (x : word64) : Z
    := Z.of_N (wordToN x).
  Definition ZToWord64 (x : Z) : word64
    := NToWord _ (Z.to_N x).

  Ltac fold_Word64_Z :=
    repeat match goal with
           | [ |- context G[NToWord bit_width (Z.to_N ?x)] ]
             => let G' := context G [ZToWord64 x] in change G'
           | [ |- context G[Z.of_N (wordToN ?x)] ]
             => let G' := context G [word64ToZ x] in change G'
           | [ H : context G[NToWord bit_width (Z.to_N ?x)] |- _ ]
             => let G' := context G [ZToWord64 x] in change G' in H
           | [ H : context G[Z.of_N (wordToN ?x)] |- _ ]
             => let G' := context G [word64ToZ x] in change G' in H
           end.

  Create HintDb push_word64ToZ discriminated.
  Hint Extern 1 => progress autorewrite with push_word64ToZ in * : push_word64ToZ.

  Lemma bit_width_pos : (0 < Z.of_nat bit_width)%Z.
  Proof. simpl; omega. Qed.

  Ltac arith := solve [ omega | auto using bit_width_pos with zarith ].

  Lemma word64ToZ_bound w : (0 <= word64ToZ w < 2^Z.of_nat bit_width)%Z.
  Proof.
    pose proof (wordToNat_bound w) as H.
    apply Nat2Z.inj_lt in H.
    rewrite Zpow_pow2, Z2Nat.id in H by (apply Z.pow_nonneg; omega).
    unfold word64ToZ.
    rewrite wordToN_nat, nat_N_Z; omega.
  Qed.

  Lemma word64ToZ_log_bound w : (0 <= word64ToZ w /\ Z.log2 (word64ToZ w) < Z.of_nat bit_width)%Z.
  Proof.
    pose proof (word64ToZ_bound w) as H.
    destruct (Z_zerop (word64ToZ w)) as [H'|H'].
    { rewrite H'; simpl; omega. }
    { split; [ | apply Z.log2_lt_pow2 ]; try omega. }
  Qed.

  Lemma ZToWord64_word64ToZ (x : word64) : ZToWord64 (word64ToZ x) = x.
  Proof.
    unfold ZToWord64, word64ToZ.
    rewrite N2Z.id, NToWord_wordToN.
    reflexivity.
  Qed.
  Hint Rewrite ZToWord64_word64ToZ : push_word64ToZ.

  Lemma word64ToZ_ZToWord64 (x : Z) : (0 <= x < 2^Z.of_nat bit_width)%Z -> word64ToZ (ZToWord64 x) = x.
  Proof.
    unfold ZToWord64, word64ToZ; intros [H0 H1].
    pose proof H1 as H1'; apply Z2Nat.inj_lt in H1'; [ | omega.. ].
    rewrite <- Z.pow_Z2N_Zpow in H1' by omega.
    replace (Z.to_nat 2) with 2%nat in H1' by reflexivity.
    rewrite wordToN_NToWord_idempotent, Z2N.id by (omega || auto using bound_check_nat_N).
    reflexivity.
  Qed.
  Hint Rewrite word64ToZ_ZToWord64 using arith : push_word64ToZ.

  Definition add : word64 -> word64 -> word64 := @wplus _.
  Definition sub : word64 -> word64 -> word64 := @wminus _.
  Definition mul : word64 -> word64 -> word64 := @wmult _.
  Definition shl : word64 -> word64 -> word64 := @wordBin N.shiftl _.
  Definition shr : word64 -> word64 -> word64 := @wordBin N.shiftr _.
  Definition land : word64 -> word64 -> word64 := @wand _.
  Definition lor : word64 -> word64 -> word64 := @wor _.
  Definition neg : word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.neg (Z.of_N (wordToN x)) (Z.of_N (wordToN y)))).
  Definition cmovne : word64 -> word64 -> word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y z w => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.cmovne (Z.of_N (wordToN x)) (Z.of_N (wordToN x)) (Z.of_N (wordToN z)) (Z.of_N (wordToN w)))).
  Definition cmovle : word64 -> word64 -> word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y z w => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.cmovl (Z.of_N (wordToN x)) (Z.of_N (wordToN x)) (Z.of_N (wordToN z)) (Z.of_N (wordToN w)))).
  Infix "+" := add : word64_scope.
  Infix "-" := sub : word64_scope.
  Infix "*" := mul : word64_scope.
  Infix "<<" := shl : word64_scope.
  Infix ">>" := shr : word64_scope.
  Infix "&'" := land : word64_scope.

  Local Ltac w64ToZ_t :=
    intros;
    try match goal with
        | [ |- ?wordToZ (?op ?x ?y) = _ ]
          => cbv [wordToZ op] in *
        end;
    autorewrite with push_Zto_N push_Zof_N push_wordToN; try reflexivity.

  Local Notation bounds_2statement wop Zop
    := (forall x y,
           (0 <= Zop (word64ToZ x) (word64ToZ y)
            -> Z.log2 (Zop (word64ToZ x) (word64ToZ y)) < Z.of_nat bit_width
            -> word64ToZ (wop x y) = (Zop (word64ToZ x) (word64ToZ y)))%Z).

  Lemma word64ToZ_add : bounds_2statement add Z.add. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_sub : bounds_2statement sub Z.sub. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_mul : bounds_2statement mul Z.mul. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_shl : bounds_2statement shl Z.shiftl.
  Proof. w64ToZ_t. admit. Admitted.
  Lemma word64ToZ_shr : bounds_2statement shr Z.shiftr.
  Proof. admit. Admitted.
  Lemma word64ToZ_land : bounds_2statement land Z.land.
  Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_lor : bounds_2statement lor Z.lor.
  Proof. w64ToZ_t. Qed.

  Definition interp_base_type (t : base_type) : Type
    := match t with
       | TZ => word64
       end.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => land (fst xy) (snd xy)
       | Lor => fun xy => lor (fst xy) (snd xy)
       | Neg => fun xy => neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
       end%word64.

  Definition of_Z ty : Z.interp_base_type ty -> interp_base_type ty
    := match ty return Z.interp_base_type ty -> interp_base_type ty with
       | TZ => ZToWord64
       end.
  Definition to_Z ty : interp_base_type ty -> Z.interp_base_type ty
    := match ty return interp_base_type ty -> Z.interp_base_type ty with
       | TZ => word64ToZ
       end.

  Module Export Rewrites.
    Ltac word64_util_arith := omega.

    Hint Rewrite word64ToZ_add using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_add using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_sub using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_sub using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_mul using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_mul using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_shl using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_shl using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_shr using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_shr using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_land using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_land using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_lor using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_lor using word64_util_arith : pull_word64ToZ.
  End Rewrites.
End Word64.

Module ZBounds.
  Record bounds := { lower : Z ; upper : Z }.
  Bind Scope bounds_scope with bounds.
  Definition t := option bounds. (* TODO?: Separate out the bounds computation from the overflow computation? e.g., have [safety := in_bounds | overflow] and [t := bounds * safety]? *)
  Bind Scope bounds_scope with t.
  Local Coercion Z.of_nat : nat >-> Z.
  Definition word64ToBounds (x : Word64.word64) : t
    := let v := Word64.word64ToZ x in Some {| lower := v ; upper := v |}.
  Definition SmartBuildBounds (l u : Z)
    := if ((0 <=? l) && (Z.log2 u <? Word64.bit_width))%Z%bool
       then Some {| lower := l ; upper := u |}
       else None.
  Definition t_map2 (f : Z -> Z -> Z -> Z -> bounds) (x y : t)
    := match x, y with
       | Some (Build_bounds lx ux), Some (Build_bounds ly uy)
         => match f lx ly ux uy with
            | Build_bounds l u
              => SmartBuildBounds l u
            end
       | _, _ => None
       end%Z.

  Definition add : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx + ly ; upper := ux + uy |}).
  Definition sub : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx - uy ; upper := ux - ly |}).
  Definition mul : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx * ly ; upper := ux * uy |}).
  Definition shl : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx << ly ; upper := ux << uy |}).
  Definition shr : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx >> uy ; upper := ux >> ly |}).
  Definition land : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := 0 ; upper := Z.min ux uy |}).
  Definition lor : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := Z.max lx ly;
                                     upper := 2^(Z.max (Z.log2 (ux+1)) (Z.log2 (uy+1))) - 1 |}).
  Definition neg : t -> t -> t
    := fun int_width v
       => match int_width, v with
          | Some (Build_bounds lint_width uint_width), Some (Build_bounds lb ub)
            => if ((0 <=? lint_width) && (uint_width <=? Word64.bit_width))%Z%bool
               then Some (let might_be_one := ((lb <=? 1) && (1 <=? ub))%Z%bool in
                          let must_be_one := ((lb =? 1) && (ub =? 1))%Z%bool in
                          if must_be_one
                          then {| lower := Z.ones lint_width ; upper := Z.ones uint_width |}
                          else if might_be_one
                               then {| lower := 0 ; upper := Z.ones uint_width |}
                               else {| lower := 0 ; upper := 0 |})
               else None
          | _, _ => None
          end.
  Definition cmovne (x y r1 r2 : t) : t
    := t_map2 (fun lr1 lr2 ur1 ur2 => {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}) r1 r2.
  Definition cmovle (x y r1 r2 : t) : t
    := t_map2 (fun lr1 lr2 ur1 ur2 => {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}) r1 r2.

  Module Export Notations.
    Delimit Scope bounds_scope with bounds.
    Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounds_scope.
    Infix "+" := add : bounds_scope.
    Infix "-" := sub : bounds_scope.
    Infix "*" := mul : bounds_scope.
    Infix "<<" := shl : bounds_scope.
    Infix ">>" := shr : bounds_scope.
    Infix "&'" := land : bounds_scope.
  End Notations.

  Definition interp_base_type (ty : base_type) : Type
    := LiftOption.interp_base_type' bounds ty.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => land (fst xy) (snd xy)
       | Lor => fun xy => lor (fst xy) (snd xy)
       | Neg => fun xy => neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
       end%bounds.

  Definition of_word64 ty : Word64.interp_base_type ty -> interp_base_type ty
    := match ty return Word64.interp_base_type ty -> interp_base_type ty with
       | TZ => word64ToBounds
       end.

  Ltac inversion_bounds :=
    let lower := (eval cbv [lower] in (fun x => lower x)) in
    let upper := (eval cbv [upper] in (fun y => upper y)) in
    repeat match goal with
           | [ H : _ = _ :> bounds |- _ ]
             => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H;
                cbv beta iota in *
           | [ H : _ = _ :> t |- _ ]
             => unfold t in H; inversion_option
           end.
End ZBounds.

Module BoundedWord64.
  Record BoundedWord :=
    { lower : Z ; value : Word64.word64 ; upper : Z ;
      in_bounds : (0 <= lower /\ lower <= Word64.word64ToZ value <= upper /\ Z.log2 upper < Z.of_nat Word64.bit_width)%Z }.
  Bind Scope bounded_word_scope with BoundedWord.
  Definition t := option BoundedWord.
  Bind Scope bounded_word_scope with t.
  Local Coercion Z.of_nat : nat >-> Z.

  Definition interp_base_type (ty : base_type)
    := LiftOption.interp_base_type' BoundedWord ty.

  Definition word64ToBoundedWord (x : Word64.word64) : t.
  Proof.
    refine (let v := Word64.word64ToZ x in
            match Sumbool.sumbool_of_bool (0 <=? v)%Z, Sumbool.sumbool_of_bool (Z.log2 v <? Z.of_nat Word64.bit_width)%Z with
            | left Hl, left Hu
              => Some {| lower := Word64.word64ToZ x ; value := x ; upper := Word64.word64ToZ x |}
            | _, _ => None
            end).
    subst v.
    abstract (Z.ltb_to_lt; repeat split; (assumption || reflexivity)).
  Defined.

  Definition boundedWordToWord64 (x : t) : Word64.word64
    := match x with
       | Some x' => value x'
       | None => Word64.ZToWord64 0
       end.

  Definition of_word64 ty : Word64.interp_base_type ty -> interp_base_type ty
    := match ty return Word64.interp_base_type ty -> interp_base_type ty with
       | TZ => word64ToBoundedWord
       end.
  Definition to_word64 ty : interp_base_type ty -> Word64.interp_base_type ty
    := match ty return interp_base_type ty -> Word64.interp_base_type ty with
       | TZ => boundedWordToWord64
       end.

  (** XXX FIXME(jgross) This is going to break horribly if we need to support any types other than [Z] *)
  Definition to_word64' ty : BoundedWord -> Word64.interp_base_type ty
    := match ty return BoundedWord -> Word64.interp_base_type ty with
       | TZ => fun x => boundedWordToWord64 (Some x)
       end.

  Definition to_Z' ty : BoundedWord -> Z.interp_base_type ty
    := fun x => Word64.to_Z _ (to_word64' _ x).

  Definition of_Z ty : Z.interp_base_type ty -> interp_base_type ty
    := fun x => of_word64 _ (Word64.of_Z _ x).
  Definition to_Z ty : interp_base_type ty -> Z.interp_base_type ty
    := fun x => Word64.to_Z _ (to_word64 _ x).

  Definition BoundedWordToBounds (x : BoundedWord) : ZBounds.bounds
    := {| ZBounds.lower := lower x ; ZBounds.upper := upper x |}.

  Definition to_bounds' := BoundedWordToBounds.

  Definition to_bounds ty : interp_base_type ty -> ZBounds.interp_base_type ty
    := match ty return interp_base_type ty -> ZBounds.interp_base_type ty with
       | TZ => option_map to_bounds'
       end.

  Local Ltac build_binop word_op bounds_op :=
    refine (fun x y : t
            => match x, y with
               | Some x, Some y
                 => match bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                          as bop return bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) = bop -> t
                    with
                    | Some (ZBounds.Build_bounds l u)
                      => let pff := _ in
                         fun pf => Some {| lower := l ; value := word_op (value x) (value y) ; upper := u;
                                           in_bounds := pff pf |}
                    | None => fun _ => None
                    end eq_refl
               | _, _ => None
               end);
    try unfold bounds_op; try unfold word_op;
    cbv [ZBounds.t_map2 BoundedWordToBounds ZBounds.SmartBuildBounds ModularBaseSystemListZOperations.neg].

  Local Ltac build_4op word_op bounds_op :=
    refine (fun x y z w : t
            => match x, y, z, w with
               | Some x, Some y, Some z, Some w
                 => match bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                                    (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                          as bop return bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                                                  (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                                        = bop -> t
                    with
                    | Some (ZBounds.Build_bounds l u)
                      => let pff := _ in
                         fun pf => Some {| lower := l ; value := word_op (value x) (value y) (value z) (value w) ; upper := u;
                                           in_bounds := pff pf |}
                    | None => fun _ => None
                    end eq_refl
               | _, _, _, _ => None
               end);
    try unfold bounds_op; try unfold word_op;
    cbv [ZBounds.t_map2 BoundedWordToBounds ZBounds.SmartBuildBounds cmovne cmovl].

  Axiom proof_admitted : False.
  Local Opaque Word64.bit_width.
  Hint Resolve Z.ones_nonneg : zarith.
  Local Ltac t_start :=
    repeat first [ progress break_match
                 | progress intros
                 | progress subst
                 | progress ZBounds.inversion_bounds
                 | progress inversion_option
                 | progress Word64.fold_Word64_Z
                 | progress autorewrite with bool_congr_setoid in *
                 | progress destruct_head' and
                 | progress Z.ltb_to_lt
                 | assumption
                 | progress destruct_head' BoundedWord; simpl in *
                 | progress autorewrite with push_word64ToZ
                 | progress repeat apply conj
                 | solve [ Word64.arith ]
                 | match goal with
                   | [ |- appcontext[Z.min ?x ?y] ]
                     => apply (Z.min_case_strong x y)
                   | [ |- appcontext[Z.max ?x ?y] ]
                     => apply (Z.max_case_strong x y)
                   end
                 | progress destruct_head' or ].

  Tactic Notation "admit" := abstract case proof_admitted.

  Definition add : t -> t -> t.
  Proof.
    build_binop Word64.add ZBounds.add; t_start;
      admit.
  Defined.

  Definition sub : t -> t -> t.
  Proof.
    build_binop Word64.sub ZBounds.sub; t_start;
      admit.
  Defined.

  Definition mul : t -> t -> t.
  Proof.
    build_binop Word64.mul ZBounds.mul; t_start;
      admit.
  Defined.

  Definition shl : t -> t -> t.
  Proof.
    build_binop Word64.shl ZBounds.shl; t_start;
      admit.
  Defined.

  Definition shr : t -> t -> t.
  Proof.
    build_binop Word64.shr ZBounds.shr; t_start;
      admit.
  Defined.

  Definition land : t -> t -> t.
  Proof.
    build_binop Word64.land ZBounds.land; t_start;
      admit.
  Defined.

  Definition lor : t -> t -> t.
  Proof.
    build_binop Word64.lor ZBounds.lor; t_start;
      admit.
  Defined.

  Definition neg : t -> t -> t.
  Proof. build_binop Word64.neg ZBounds.neg; abstract t_start. Defined.

  Definition cmovne : t -> t -> t -> t -> t.
  Proof. build_4op Word64.cmovne ZBounds.cmovne; abstract t_start. Defined.

  Definition cmovle : t -> t -> t -> t -> t.
  Proof. build_4op Word64.cmovle ZBounds.cmovle; abstract t_start. Defined.

  Local Notation value_binop_correct op opW :=
    (forall x y v, op (Some x) (Some y) = Some v -> value v = opW (value x) (value y))
      (only parsing).

  Definition value_add : value_binop_correct add Word64.add.
  Proof.
  Admitted.

  Module Export Notations.
    Delimit Scope bounded_word_scope with bounded_word.
    Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounded_word_scope.
    Infix "+" := add : bounded_word_scope.
    Infix "-" := sub : bounded_word_scope.
    Infix "*" := mul : bounded_word_scope.
    Infix "<<" := shl : bounded_word_scope.
    Infix ">>" := shr : bounded_word_scope.
    Infix "&'" := land : bounded_word_scope.
  End Notations.

  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => land (fst xy) (snd xy)
       | Lor => fun xy => lor (fst xy) (snd xy)
       | Neg => fun xy => neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
       end%bounded_word.
End BoundedWord64.

Module ZBoundsTuple.
  Definition interp_flat_type (t : flat_type base_type)
    := LiftOption.interp_flat_type ZBounds.bounds t.

  Definition of_ZBounds {ty} : Syntax.interp_flat_type ZBounds.interp_base_type ty -> interp_flat_type ty
    := @LiftOption.of' ZBounds.bounds ty.
  Definition to_ZBounds {ty} : interp_flat_type ty -> Syntax.interp_flat_type ZBounds.interp_base_type ty
    := @LiftOption.to' ZBounds.bounds ty.
End ZBoundsTuple.

Module BoundedWord64Tuple.
  Definition interp_flat_type (t : flat_type base_type)
    := LiftOption.interp_flat_type BoundedWord64.BoundedWord t.

  Definition of_BoundedWord64 {ty} : Syntax.interp_flat_type BoundedWord64.interp_base_type ty -> interp_flat_type ty
    := @LiftOption.of' BoundedWord64.BoundedWord ty.
  Definition to_BoundedWord64 {ty} : interp_flat_type ty -> Syntax.interp_flat_type BoundedWord64.interp_base_type ty
    := @LiftOption.to' BoundedWord64.BoundedWord ty.
End BoundedWord64Tuple.