aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Z/Interpretations.v
blob: 1732e036be4d84cd1d3815744e688ccf9ee25ac4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(** * Interpretation of PHOAS syntax for expression trees on ℤ *)
Require Import Coq.ZArith.ZArith.
Require Import Crypto.Reflection.Z.Syntax.
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.ModularArithmetic.ModularBaseSystemListZOperations.
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Tactics.
Require Import Bedrock.Word.
Require Import Crypto.Assembly.WordizeUtil.
Require Import Crypto.Util.WordUtil.
Export Reflection.Syntax.Notations.

Local Notation eta x := (fst x, snd x).
Local Notation eta3 x := (eta (fst x), snd x).
Local Notation eta4 x := (eta3 (fst x), snd x).

Module Z.
  Definition interp_base_type (t : base_type) : Type := interp_base_type t.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := interp_op src dst f.
End Z.

Module Word64.
  Definition bit_width : nat := 64.
  Definition word64 := word bit_width.
  Delimit Scope word64_scope with word64.
  Bind Scope word64_scope with word64.

  Definition word64ToZ (x : word64) : Z
    := Z.of_N (wordToN x).
  Definition ZToWord64 (x : Z) : word64
    := NToWord _ (Z.to_N x).

  Create HintDb push_word64ToZ discriminated.
  Hint Extern 1 => progress autorewrite with push_word64ToZ in * : push_word64ToZ.

  Definition w64plus : word64 -> word64 -> word64 := @wplus _.
  Definition w64minus : word64 -> word64 -> word64 := @wminus _.
  Definition w64mul : word64 -> word64 -> word64 := @wmult _.
  Definition w64shl : word64 -> word64 -> word64
    := fun x y => NToWord _ (Z.to_N (Z.shiftl (Z.of_N (wordToN x)) (Z.of_N (wordToN y)))).
  Definition w64shr : word64 -> word64 -> word64
    := fun x y => NToWord _ (Z.to_N (Z.shiftr (Z.of_N (wordToN x)) (Z.of_N (wordToN y)))).
  Definition w64land : word64 -> word64 -> word64 := @wand _.
  Definition w64lor : word64 -> word64 -> word64 := @wor _.
  Definition w64neg : word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.neg (Z.of_N (wordToN x)) (Z.of_N (wordToN x)))).
  Definition w64cmovne : word64 -> word64 -> word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y z w => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.cmovne (Z.of_N (wordToN x)) (Z.of_N (wordToN x)) (Z.of_N (wordToN z)) (Z.of_N (wordToN w)))).
  Definition w64cmovle : word64 -> word64 -> word64 -> word64 -> word64 (* TODO: FIXME? *)
    := fun x y z w => NToWord _ (Z.to_N (ModularBaseSystemListZOperations.cmovl (Z.of_N (wordToN x)) (Z.of_N (wordToN x)) (Z.of_N (wordToN z)) (Z.of_N (wordToN w)))).
  Infix "+" := w64plus : word64_scope.
  Infix "-" := w64minus : word64_scope.
  Infix "*" := w64mul : word64_scope.
  Infix "<<" := w64shl : word64_scope.
  Infix ">>" := w64shr : word64_scope.
  Infix "&'" := w64land : word64_scope.

  Local Ltac w64ToZ_t :=
    intros;
    try match goal with
        | [ |- ?wordToZ (?op ?x ?y) = _ ]
          => cbv [wordToZ op] in *
        end;
    autorewrite with push_Zto_N push_Zof_N push_wordToN; try reflexivity.

  Local Notation bounds_2statement wop Zop
    := (forall x y,
           (0 <= Zop (word64ToZ x) (word64ToZ y)
            -> Z.log2 (Zop (word64ToZ x) (word64ToZ y)) < Z.of_nat bit_width
            -> word64ToZ (wop x y) = (Zop (word64ToZ x) (word64ToZ y)))%Z).

  Require Import Crypto.Assembly.WordizeUtil.

  Lemma word64ToZ_w64plus : bounds_2statement w64plus Z.add. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_w64minus : bounds_2statement w64minus Z.sub. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_w64mul : bounds_2statement w64mul Z.mul. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_w64land : bounds_2statement w64land Z.land. Proof. w64ToZ_t. Qed.
  Lemma word64ToZ_w64lor : bounds_2statement w64lor Z.lor. Proof. w64ToZ_t. Qed.

  Lemma word64ToZ_w64shl : bounds_2statement w64shl Z.shiftl.
  Proof.
    intros x y H H0.
    w64ToZ_t.

    destruct (N.eq_dec (Z.to_N (Z.of_N (wordToN x) << Z.of_N (wordToN y))) 0%N) as [e|e]; [
      rewrite e; rewrite wordToN_NToWord; [|apply Npow2_gt0];
      rewrite <- e; rewrite Z2N.id; [reflexivity|assumption]
    | apply N.neq_0_lt_0 in e].

    apply Z.bits_inj_iff'; intros k Hpos.
    rewrite Z.shiftl_spec; [|assumption].
    rewrite Z2N.inj_testbit; [|assumption].
    rewrite wordToN_NToWord.

    - rewrite <- N2Z.inj_testbit.
      rewrite (Z2N.id k); [|assumption].
      rewrite Z2N.id; [|assumption].
      rewrite Z.shiftl_spec; [reflexivity|assumption].

    - rewrite Npow2_N.
      apply N.log2_lt_pow2; [assumption|].
      apply N2Z.inj_lt.
      rewrite nat_N_Z.
      refine (Z.le_lt_trans _ _ _ _ H0).
      rewrite log2_conv; reflexivity.
  Qed.

  Lemma word64ToZ_w64shr : bounds_2statement w64shr Z.shiftr.
  Proof.
    intros x y H H0.
    w64ToZ_t.

    destruct (N.eq_dec (Z.to_N (Z.of_N (wordToN x) >> Z.of_N (wordToN y))) 0%N) as [e|e]; [
      rewrite e; rewrite wordToN_NToWord; [|apply Npow2_gt0];
      rewrite <- e; rewrite Z2N.id; [reflexivity|assumption]
    | apply N.neq_0_lt_0 in e].

    apply Z.bits_inj_iff'; intros k Hpos.
    rewrite Z.shiftr_spec; [|assumption].
    rewrite Z2N.inj_testbit; [|assumption].
    rewrite wordToN_NToWord.

    - rewrite <- N2Z.inj_testbit.
      rewrite (Z2N.id k); [|assumption].
      rewrite Z2N.id; [|assumption].
      rewrite Z.shiftr_spec; [reflexivity|assumption].

    - rewrite Npow2_N.
      apply N.log2_lt_pow2; [assumption|].
      apply N2Z.inj_lt.
      rewrite nat_N_Z.
      refine (Z.le_lt_trans _ _ _ _ H0).
      rewrite log2_conv; reflexivity.
  Qed.

  Definition interp_base_type (t : base_type) : Type
    := match t with
       | TZ => word64
       end.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => w64land (fst xy) (snd xy)
       | Lor => fun xy => w64lor (fst xy) (snd xy)
       | Neg => fun xy => w64neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in w64cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in w64cmovle x y z w
       end%word64.

  Definition of_Z ty : Z.interp_base_type ty -> interp_base_type ty
    := match ty return Z.interp_base_type ty -> interp_base_type ty with
       | TZ => ZToWord64
       end.
  Definition to_Z ty : interp_base_type ty -> Z.interp_base_type ty
    := match ty return interp_base_type ty -> Z.interp_base_type ty with
       | TZ => word64ToZ
       end.

  Module Export Rewrites.
    Ltac word64_util_arith := omega.

    Hint Rewrite word64ToZ_w64plus using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64plus using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64minus using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64minus using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64mul using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64mul using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64shl using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64shl using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64shr using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64shr using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64land using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64land using word64_util_arith : pull_word64ToZ.
    Hint Rewrite word64ToZ_w64lor using word64_util_arith : push_word64ToZ.
    Hint Rewrite <- word64ToZ_w64lor using word64_util_arith : pull_word64ToZ.
  End Rewrites.
End Word64.

Module ZBounds.
  Record bounds := { lower : Z ; upper : Z }.
  Bind Scope bounds_scope with bounds.
  Definition t := option bounds. (* TODO?: Separate out the bounds computation from the overflow computation? e.g., have [safety := in_bounds | overflow] and [t := bounds * safety]? *)
  Bind Scope bounds_scope with t.
  Local Coercion Z.of_nat : nat >-> Z.
  Definition word64ToBounds (x : Word64.word64) : t
    := let v := Word64.word64ToZ x in Some {| lower := v ; upper := v |}.
  Definition SmartBuildBounds (l u : Z)
    := if ((0 <=? l) && (Z.log2 u <? Word64.bit_width))%Z%bool
       then Some {| lower := l ; upper := u |}
       else None.
  Definition t_map2 (f : Z -> Z -> Z -> Z -> bounds) (x y : t)
    := match x, y with
       | Some (Build_bounds lx ux), Some (Build_bounds ly uy)
         => match f lx ly ux uy with
            | Build_bounds l u
              => SmartBuildBounds l u
            end
       | _, _ => None
       end%Z.

  Definition add : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx + ly ; upper := ux + uy |}).
  Definition sub : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx - uy ; upper := ux - ly |}).
  Definition mul : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx * ly ; upper := ux * uy |}).
  Definition shl : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx << ly ; upper := ux << uy |}).
  Definition shr : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := lx >> uy ; upper := ux >> ly |}).
  Definition land : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := 0 ; upper := Z.min ux uy |}).
  Definition lor : t -> t -> t
    := t_map2 (fun lx ly ux uy => {| lower := Z.max lx ly;
                                     upper := 2^(Z.max (Z.log2 (ux+1)) (Z.log2 (uy+1))) - 1 |}).
  Definition neg : t -> t -> t
    := t_map2 (fun lint_width lb uint_width ub
               => let might_be_one := ((lb <=? 1) && (1 <=? ub))%Z%bool in
                  let must_be_one := ((lb =? 1) && (ub =? 1))%Z%bool in
                  if must_be_one
                  then {| lower := Z.ones lint_width ; upper := Z.ones uint_width |}
                  else if might_be_one
                       then {| lower := 0 ; upper := Z.ones uint_width |}
                       else {| lower := 0 ; upper := 0 |}).
  Definition cmovne (x y r1 r2 : t) : t
    := match x, y with
       | Some (Build_bounds lx ux), Some (Build_bounds ly uy)
         => let must_be_equal := ((lx =? ux) && (ly =? uy) && (lx =? ly))%Z%bool in
            let might_be_equal := ((lx <=? uy) && (ly <=? ux))%Z%bool in
            if must_be_equal
            then r1
            else if negb might_be_equal
                 then r2
                 else t_map2 (fun lr1 lr2 ur1 ur2 => {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}) r1 r2
       | _, _ => None
       end%Z.
  Definition cmovle (x y r1 r2 : t) : t
    := match x, y with
       | Some (Build_bounds lx ux), Some (Build_bounds ly uy)
         => let must_be_le := (ux <=? ly)%Z in
            let might_be_le := (lx <=? uy)%Z in
            if must_be_le
            then r1
            else if negb might_be_le
                 then r2
                 else t_map2 (fun lr1 lr2 ur1 ur2 => {| lower := Z.min lr1 lr2 ; upper := Z.max ur1 ur2 |}) r1 r2
       | _, _ => None
       end%Z.

  Module Export Notations.
    Delimit Scope bounds_scope with bounds.
    Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounds_scope.
    Infix "+" := add : bounds_scope.
    Infix "-" := sub : bounds_scope.
    Infix "*" := mul : bounds_scope.
    Infix "<<" := shl : bounds_scope.
    Infix ">>" := shr : bounds_scope.
    Infix "&'" := land : bounds_scope.
  End Notations.

  Definition interp_base_type (ty : base_type) : Type
    := match ty with
       | TZ => t
       end.
  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => land (fst xy) (snd xy)
       | Lor => fun xy => lor (fst xy) (snd xy)
       | Neg => fun xy => neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
       end%bounds.

  Definition of_word64 ty : Word64.interp_base_type ty -> interp_base_type ty
    := match ty return Word64.interp_base_type ty -> interp_base_type ty with
       | TZ => word64ToBounds
       end.

  Ltac inversion_bounds :=
    let lower := (eval cbv [lower] in (fun x => lower x)) in
    let upper := (eval cbv [upper] in (fun y => upper y)) in
    repeat match goal with
           | [ H : _ = _ :> bounds |- _ ]
             => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H;
                cbv beta iota in *
           | [ H : _ = _ :> t |- _ ]
             => unfold t in H; inversion_option
           end.
End ZBounds.

Module BoundedWord64.
  Record BoundedWord :=
    { lower : Z ; value : Word64.word64 ; upper : Z ;
      in_bounds : (0 <= lower /\ lower <= Word64.word64ToZ value <= upper /\ Z.log2 upper < Z.of_nat Word64.bit_width)%Z }.
  Bind Scope bounded_word_scope with BoundedWord.
  Definition t := option BoundedWord.
  Bind Scope bounded_word_scope with t.
  Local Coercion Z.of_nat : nat >-> Z.

  Definition interp_base_type (ty : base_type) : Type
    := match ty with
       | TZ => t
       end.


  Definition word64ToBoundedWord (x : Word64.word64) : t.
  Proof.
    refine (let v := Word64.word64ToZ x in
            (if (0 <=? v)%Z as Hl return (0 <=? v)%Z = Hl -> t
             then (if (Z.log2 v <? Z.of_nat Word64.bit_width)%Z as Hu return (Z.log2 v <? Z.of_nat Word64.bit_width)%Z = Hu -> _ -> t
                   then fun Hu Hl => Some {| lower := Word64.word64ToZ x ; value := x ; upper := Word64.word64ToZ x |}
                   else fun _ _ => None) eq_refl
             else fun _ => None) eq_refl).
    subst v.
    abstract (Z.ltb_to_lt; repeat split; (assumption || reflexivity)).
  Defined.

  Definition of_word64 ty : Word64.interp_base_type ty -> interp_base_type ty
    := match ty return Word64.interp_base_type ty -> interp_base_type ty with
       | TZ => word64ToBoundedWord
       end.

  Definition BoundedWordToBounds (x : BoundedWord) : ZBounds.bounds
    := {| ZBounds.lower := lower x ; ZBounds.upper := upper x |}.

  Definition to_bounds ty : interp_base_type ty -> ZBounds.interp_base_type ty
    := match ty return interp_base_type ty -> ZBounds.interp_base_type ty with
       | TZ => option_map BoundedWordToBounds
       end.

  Local Ltac build_binop word_op bounds_op :=
    refine (fun x y : t
            => match x, y with
               | Some x, Some y
                 => match bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                          as bop return bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y)) = bop -> t
                    with
                    | Some (ZBounds.Build_bounds l u)
                      => let pff := _ in
                         fun pf => Some {| lower := l ; value := word_op (value x) (value y) ; upper := u;
                                           in_bounds := pff pf |}
                    | None => fun _ => None
                    end eq_refl
               | _, _ => None
               end);
    try unfold word_op; try unfold bounds_op;
    cbv [ZBounds.t_map2 BoundedWordToBounds ZBounds.SmartBuildBounds].

  Local Ltac build_4op word_op bounds_op :=
    refine (fun x y z w : t
            => match x, y, z, w with
               | Some x, Some y, Some z, Some w
                 => match bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                                    (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                          as bop return bounds_op (Some (BoundedWordToBounds x)) (Some (BoundedWordToBounds y))
                                                  (Some (BoundedWordToBounds z)) (Some (BoundedWordToBounds w))
                                        = bop -> t
                    with
                    | Some (ZBounds.Build_bounds l u)
                      => let pff := _ in
                         fun pf => Some {| lower := l ; value := word_op (value x) (value y) (value z) (value w) ; upper := u;
                                           in_bounds := pff pf |}
                    | None => fun _ => None
                    end eq_refl
               | _, _, _, _ => None
               end);
    try unfold word_op; try unfold bounds_op;
    cbv [ZBounds.t_map2 BoundedWordToBounds ZBounds.SmartBuildBounds].

  Axiom proof_admitted : False.
  Local Ltac t_start :=
    repeat first [ progress break_match
                 | progress intros
                 | progress subst
                 | progress ZBounds.inversion_bounds
                 | progress inversion_option
                 | progress autorewrite with bool_congr_setoid in *
                 | progress destruct_head' and
                 | progress Z.ltb_to_lt
                 | assumption
                 | progress destruct_head' BoundedWord; simpl in *
                 | progress autorewrite with push_word64ToZ
                 | progress repeat apply conj ].

  Tactic Notation "admit" := abstract case proof_admitted.

  Definition add : t -> t -> t.
  Proof.
    build_binop Word64.w64plus ZBounds.add; t_start;
      admit.
  Defined.

  Definition sub : t -> t -> t.
  Proof.
    build_binop Word64.w64minus ZBounds.sub; t_start;
      admit.
  Defined.

  Definition mul : t -> t -> t.
  Proof.
    build_binop Word64.w64mul ZBounds.mul; t_start;
      admit.
  Defined.

  Definition shl : t -> t -> t.
  Proof.
    build_binop Word64.w64shl ZBounds.shl; t_start;
      admit.
  Defined.

  Definition shr : t -> t -> t.
  Proof.
    build_binop Word64.w64shr ZBounds.shr; t_start;
      admit.
  Defined.

  Definition land : t -> t -> t.
  Proof.
    build_binop Word64.w64land ZBounds.land; t_start;
      admit.
  Defined.

  Definition lor : t -> t -> t.
  Proof.
    build_binop Word64.w64lor ZBounds.lor; t_start;
      admit.
  Defined.

  Definition neg : t -> t -> t.
  Proof.
    build_binop Word64.w64neg ZBounds.neg; t_start;
      admit.
  Defined.

  Definition cmovne : t -> t -> t -> t -> t.
  Proof.
    build_4op Word64.w64cmovne ZBounds.cmovne; t_start;
      admit.
  Defined.

  Definition cmovle : t -> t -> t -> t -> t.
  Proof.
    build_4op Word64.w64cmovle ZBounds.cmovle; t_start;
      admit.
  Defined.

  Module Export Notations.
    Delimit Scope bounded_word_scope with bounded_word.
    Notation "b[ l ~> u ]" := {| lower := l ; upper := u |} : bounded_word_scope.
    Infix "+" := add : bounded_word_scope.
    Infix "-" := sub : bounded_word_scope.
    Infix "*" := mul : bounded_word_scope.
    Infix "<<" := shl : bounded_word_scope.
    Infix ">>" := shr : bounded_word_scope.
    Infix "&'" := land : bounded_word_scope.
  End Notations.

  Definition interp_op {src dst} (f : op src dst) : interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst
    := match f in op src dst return interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst with
       | Add => fun xy => fst xy + snd xy
       | Sub => fun xy => fst xy - snd xy
       | Mul => fun xy => fst xy * snd xy
       | Shl => fun xy => fst xy << snd xy
       | Shr => fun xy => fst xy >> snd xy
       | Land => fun xy => land (fst xy) (snd xy)
       | Lor => fun xy => lor (fst xy) (snd xy)
       | Neg => fun xy => neg (fst xy) (snd xy)
       | Cmovne => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovne x y z w
       | Cmovle => fun xyzw => let '(x, y, z, w) := eta4 xyzw in cmovle x y z w
       end%bounded_word.
End BoundedWord64.

Module Relations.
  Definition lift_relation {T} (R : BoundedWord64.BoundedWord -> T -> Prop) : BoundedWord64.t -> T -> Prop
    := fun x y => match x with
                  | Some _ => True
                  | None => False
                  end -> match x with
                         | Some x' => R x' y
                         | None => True
                         end.

  Definition related'_Z (x : BoundedWord64.BoundedWord) (y : Z) : Prop
    := Word64.word64ToZ (BoundedWord64.value x) = y.
  Definition related_Z : BoundedWord64.t -> Z -> Prop := lift_relation related'_Z.
  Definition related'_word64 (x : BoundedWord64.BoundedWord) (y : Word64.word64) : Prop
    := BoundedWord64.value x = y.
  Definition related_word64 : BoundedWord64.t -> Word64.word64 -> Prop := lift_relation related'_word64.
  Definition related_bounds (x : BoundedWord64.t) (y : ZBounds.t) : Prop
    := match x, y with
       | Some x, Some y
         => BoundedWord64.lower x = ZBounds.lower y /\ BoundedWord64.upper x = ZBounds.upper y
       | Some _, _
         => False
       | None, None => True
       | None, _ => False
       end.
End Relations.