aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Z/ArithmeticSimplifierWf.v
blob: 70e47f24fe1c9c527203fbe454f4e1e2e671abb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Reflection.Wf.
Require Import Crypto.Reflection.WfInversion.
Require Import Crypto.Reflection.TypeInversion.
Require Import Crypto.Reflection.ExprInversion.
Require Import Crypto.Reflection.RewriterWf.
Require Import Crypto.Reflection.Z.Syntax.
Require Import Crypto.Reflection.Z.OpInversion.
Require Import Crypto.Reflection.Z.ArithmeticSimplifier.
Require Import Crypto.Reflection.Z.Syntax.Equality.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.HProp.

Local Notation exprf := (@exprf base_type op).
Local Notation expr := (@expr base_type op).
Local Notation Expr := (@Expr base_type op).
Local Notation wff := (@wff base_type op).
Local Notation Wf := (@Wf base_type op).

Local Ltac fin_t :=
  first [ exact I
        | reflexivity
        | congruence
        | assumption
        | exfalso; assumption ].
Local Ltac break_t_step :=
  first [ progress subst
        | progress inversion_option
        | progress inversion_sum
        | progress inversion_expr
        | progress inversion_prod
        | progress invert_op
        | progress inversion_flat_type
        | progress destruct_head'_and
        | progress destruct_head' iff
        | progress destruct_head'_prod
        | progress destruct_head'_sig
        | progress specialize_by reflexivity
        | progress eliminate_hprop_eq
        | progress break_innermost_match_step
        | progress break_match_hyps
        | progress inversion_wf_constr ].


Lemma interp_as_expr_or_const_None_iff {var1 var2 t} {G e1 e2}
      (Hwf : @wff var1 var2 G t e1 e2)
  : @interp_as_expr_or_const var1 t e1 = None
    <-> @interp_as_expr_or_const var2 t e2 = None.
Proof.
  induction Hwf;
    repeat first [ fin_t
                 | split; congruence
                 | progress simpl in *
                 | progress intros
                 | break_t_step ].
Qed.

Lemma interp_as_expr_or_const_None_Some {var1 var2 t} {G e1 e2 v}
      (Hwf : @wff var1 var2 G t e1 e2)
  : @interp_as_expr_or_const var1 t e1 = None
    -> @interp_as_expr_or_const var2 t e2 = Some v
    -> False.
Proof.
  erewrite interp_as_expr_or_const_None_iff by eassumption; congruence.
Qed.

Lemma interp_as_expr_or_const_Some_None {var1 var2 t} {G e1 e2 v}
      (Hwf : @wff var1 var2 G t e1 e2)
  : @interp_as_expr_or_const var1 t e1 = Some v
    -> @interp_as_expr_or_const var2 t e2 = None
    -> False.
Proof.
  erewrite <- interp_as_expr_or_const_None_iff by eassumption; congruence.
Qed.

Lemma wff_interp_as_expr_or_const_base {var1 var2 t} {G e1 e2 v1 v2}
      (Hwf : @wff var1 var2 G (Tbase t) e1 e2)
  : @interp_as_expr_or_const var1 (Tbase t) e1 = Some v1
    -> @interp_as_expr_or_const var2 (Tbase t) e2 = Some v2
    -> match v1, v2 with
       | const_of z1, const_of z2 => z1 = z2
       | gen_expr e1, gen_expr e2
       | neg_expr e1, neg_expr e2
         => wff G e1 e2
       | const_of _, _
       | gen_expr _, _
       | neg_expr _, _
         => False
       end.
Proof.
  invert_one_expr e1; intros; break_innermost_match; intros;
    try invert_one_expr e2; intros;
      repeat first [ fin_t
                   | progress simpl in *
                   | progress intros
                   | break_t_step
                   | match goal with
                     | [ H : wff _ _ ?e |- _ ] => is_var e; invert_one_expr e
                     end ].
Qed.

Lemma wff_interp_as_expr_or_const_prod_base {var1 var2 A B} {G e1 e2} {v1 v2 : _ * _}
      (Hwf : wff G e1 e2)
  : @interp_as_expr_or_const var1 (Prod (Tbase A) (Tbase B)) e1 = Some v1
    -> @interp_as_expr_or_const var2 (Prod (Tbase A) (Tbase B)) e2 = Some v2
    -> match fst v1, fst v2 with
       | const_of z1, const_of z2 => z1 = z2
       | gen_expr e1, gen_expr e2
       | neg_expr e1, neg_expr e2
         => wff G e1 e2
       | const_of _, _
       | gen_expr _, _
       | neg_expr _, _
         => False
       end
       /\ match snd v1, snd v2 with
          | const_of z1, const_of z2 => z1 = z2
          | gen_expr e1, gen_expr e2
          | neg_expr e1, neg_expr e2
            => wff G e1 e2
          | const_of _, _
          | gen_expr _, _
          | neg_expr _, _
            => False
          end.
Proof.
  invert_one_expr e1; intros; break_innermost_match; intros; try exact I;
    try invert_one_expr e2; intros; break_innermost_match; intros; try exact I;
      repeat first [ fin_t
                   | progress simpl in *
                   | break_t_step
                   | match goal with
                     | [ H1 : _ = Some _, H2 : _ = Some _, Hwf : wff _ _ _ |- _ ]
                       => pose proof (wff_interp_as_expr_or_const_base Hwf H1 H2); clear H1 H2
                     | [ |- and _ _ ] => split
                     end ].
Qed.

Lemma Wf_SimplifyArith {t} (e : Expr t)
      (Hwf : Wf e)
  : Wf (SimplifyArith e).
Proof.
  apply Wf_RewriteOp; [ | assumption ].
  intros ???????? Hwf'; unfold simplify_op_expr;
    break_innermost_match; repeat constructor; auto;
      repeat first [ fin_t
                   | progress simpl in *
                   | progress subst
                   | progress Z.ltb_to_lt
                   | match goal with
                     | [ H1 : _ = Some _, H2 : _ = Some _, Hwf : wff _ _ _ |- _ ]
                       => pose proof (wff_interp_as_expr_or_const_base Hwf H1 H2); clear H1 H2
                     | [ H1 : _ = Some _, H2 : _ = Some _, Hwf : wff _ _ _ |- _ ]
                       => pose proof (wff_interp_as_expr_or_const_prod_base Hwf H1 H2); clear H1 H2
                     | [ H1 : _ = Some _, H2 : _ = None, Hwf : wff _ _ _ |- _ ]
                       => pose proof (interp_as_expr_or_const_Some_None Hwf H1 H2); clear H1 H2
                     | [ H1 : _ = None, H2 : _ = Some _, Hwf : wff _ _ _ |- _ ]
                       => pose proof (interp_as_expr_or_const_None_Some Hwf H1 H2); clear H1 H2
                     | [ |- wff _ _ _ ] => constructor
                     end
                   | break_t_step ].
Qed.