aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Syntax.v
blob: c5e8126983d2e5debe38fd1d2b7f4d301bca14bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
(** * PHOAS Representation of Gallina *)
Require Import Coq.Strings.String Coq.Classes.RelationClasses.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Tactics.
Require Import Crypto.Util.Notations.

(** We parameterize the language over a type of basic type codes (for
    things like [Z], [word], [bool]), as well as a type of n-ary
    operations returning one value, and n-ary operations returning two
    values. *)
Delimit Scope ctype_scope with ctype.
Local Open Scope ctype_scope.
Delimit Scope expr_scope with expr.
Local Open Scope expr_scope.
Section language.
  Context (base_type_code : Type).

  Inductive flat_type := Tbase (_ : base_type_code) | Prod (x y : flat_type).
  Bind Scope ctype_scope with flat_type.

  Inductive type := Tflat (_ : flat_type) | Arrow (x : base_type_code) (y : type).
  Bind Scope ctype_scope with type.

  Global Coercion Tflat : flat_type >-> type.
  Infix "*" := Prod : ctype_scope.
  Notation "A -> B" := (Arrow A B) : ctype_scope.
  Local Coercion Tbase : base_type_code >-> flat_type.

  Section interp.
    Section type.
      Context (interp_flat_type : flat_type -> Type).
      Fixpoint interp_type_gen (t : type) :=
        match t with
        | Tflat t => interp_flat_type t
        | Arrow x y => (interp_flat_type x -> interp_type_gen y)%type
        end.
      Section rel.
        Context (R : forall t, interp_flat_type t -> interp_flat_type t -> Prop).
        Fixpoint interp_type_gen_rel_pointwise (t : type)
          : interp_type_gen t -> interp_type_gen t -> Prop :=
          match t with
          | Tflat t => R t
          | Arrow _ y => fun f g => forall x, interp_type_gen_rel_pointwise y (f x) (g x)
          end.
        Global Instance interp_type_gen_rel_pointwise_Reflexive {H : forall t, Reflexive (R t)}
          : forall t, Reflexive (interp_type_gen_rel_pointwise t).
        Proof. induction t; repeat intro; reflexivity. Qed.
        Global Instance interp_type_gen_rel_pointwise_Symmetric {H : forall t, Symmetric (R t)}
          : forall t, Symmetric (interp_type_gen_rel_pointwise t).
        Proof. induction t; repeat intro; symmetry; eauto. Qed.
        Global Instance interp_type_gen_rel_pointwise_Transitive {H : forall t, Transitive (R t)}
          : forall t, Transitive (interp_type_gen_rel_pointwise t).
        Proof. induction t; repeat intro; etransitivity; eauto. Qed.
      End rel.
    End type.
    Section flat_type.
      Context (interp_base_type : base_type_code -> Type).
      Fixpoint interp_flat_type_gen (t : flat_type) :=
        match t with
        | Tbase t => interp_base_type t
        | Prod x y => prod (interp_flat_type_gen x) (interp_flat_type_gen y)
        end.
      Definition interp_type := interp_type_gen interp_flat_type_gen.
    End flat_type.
  End interp.

  Section expr_param.
    Context (interp_base_type : base_type_code -> Type).
    Context (op : flat_type (* input tuple *) -> flat_type (* output type *) -> Type).
    Local Notation interp_type := (interp_type interp_base_type).
    Local Notation interp_flat_type := (interp_flat_type_gen interp_base_type).
    Section expr.
      Context {var : base_type_code -> Type}.

      (** N.B. [Let] binds the components of a pair to separate variables, and does so recursively *)
      Inductive exprf : flat_type -> Type :=
      | Const {t : flat_type} : interp_type t -> exprf t
      | Var {t} : var t -> exprf t
      | Op {t1 tR} : op t1 tR -> exprf t1 -> exprf tR
      | Let : forall {tx}, exprf tx -> forall {tC}, (interp_flat_type_gen var tx -> exprf tC) -> exprf tC
      | Pair : forall {t1}, exprf t1 -> forall {t2}, exprf t2 -> exprf (Prod t1 t2).
      Bind Scope expr_scope with exprf.
      Inductive expr : type -> Type :=
      | Return {t} : exprf t -> expr t
      | Abs {src dst} : (var src -> expr dst) -> expr (Arrow src dst).
      Bind Scope expr_scope with expr.
      Global Coercion Return : exprf >-> expr.
      (** Sometimes, we want to deal with partially-interpreted
          expressions, things like [prod (exprf A) (exprf B)] rather
          than [exprf (Prod A B)], or like [prod (var A) (var B)] when
          we start with the type [Prod A B].  These convenience
          functions let us recurse on the type in only one place, and
          replace one kind of pairing operator (be it [pair] or [Pair]
          or anything else) with another kind, and simultaneously
          mapping a function over the base values (e.g., [Var] (for
          turning [var] into [exprf]) or [Const] (for turning
          [interp_base_type] into [exprf])). *)
      Fixpoint smart_interp_flat_map {f g}
               (h : forall x, f x -> g (Tbase x))
               (pair : forall A B, g A -> g B -> g (Prod A B))
               {t}
        : interp_flat_type_gen f t -> g t
        := match t return interp_flat_type_gen f t -> g t with
           | Tbase _ => h _
           | Prod A B => fun v => pair _ _
                                       (@smart_interp_flat_map f g h pair A (fst v))
                                       (@smart_interp_flat_map f g h pair B (snd v))
           end.
      (** [SmartVar] is like [Var], except that it inserts
          pair-projections and [Pair] as necessary to handle
          [flat_type], and not just [base_type_code] *)
      Definition SmartVar {t} : interp_flat_type_gen var t -> exprf t
        := @smart_interp_flat_map var exprf (fun t => Var) (fun A B x y => Pair x y) t.
      Definition SmartVarVar {t} : interp_flat_type_gen var t -> interp_flat_type_gen exprf t
        := @smart_interp_flat_map var (interp_flat_type_gen exprf) (fun t => Var) (fun A B x y => pair x y) t.
      Definition SmartConst {t} : interp_flat_type t -> interp_flat_type_gen exprf t
        := @smart_interp_flat_map _ (interp_flat_type_gen exprf) (fun t => Const) (fun A B x y => pair x y) t.
    End expr.

    Definition Expr (t : type) := forall var, @expr var t.

    Section interp.
      Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).

      Fixpoint interpf {t} (e : @exprf interp_flat_type t) : interp_flat_type t
        := match e in exprf t return interp_flat_type t with
           | Const _ x => x
           | Var _ x => x
           | Op _ _ op args => @interp_op _ _ op (@interpf _ args)
           | Let _ ex _ eC => let x := @interpf _ ex in @interpf _ (eC x)
           | Pair _ ex _ ey => (@interpf _ ex, @interpf _ ey)
           end.
      Fixpoint interp {t} (e : @expr interp_type t) : interp_type t
        := match e in expr t return interp_type t with
           | Return _ x => interpf x
           | Abs _ _ f => fun x => @interp _ (f x)
           end.

      Definition Interp {t} (E : Expr t) : interp_type t := interp (E _).
    End interp.

    Section map.
      Context {var1 var2 : base_type_code -> Type}.
      Context (fvar12 : forall t, var1 t -> var2 t)
              (fvar21 : forall t, var2 t -> var1 t).

      Fixpoint mapf_interp_flat_type_gen {t} (e : interp_flat_type_gen var2 t) {struct t}
        : interp_flat_type_gen var1 t
        := match t return interp_flat_type_gen _ t -> interp_flat_type_gen _ t with
           | Tbase _ => fvar21 _
           | Prod x y => fun xy => (@mapf_interp_flat_type_gen _ (fst xy),
                                    @mapf_interp_flat_type_gen _ (snd xy))
           end e.

      Fixpoint mapf {t} (e : @exprf var1 t) : @exprf var2 t
        := match e in exprf t return exprf t with
           | Const _ x => Const x
           | Var _ x => Var (fvar12 _ x)
           | Op _ _ op args => Op op (@mapf _ args)
           | Let _ ex _ eC => Let (@mapf _ ex) (fun x => @mapf _ (eC (mapf_interp_flat_type_gen x)))
           | Pair _ ex _ ey => Pair (@mapf _ ex) (@mapf _ ey)
           end.
    End map.

    Section wf.
      Context {var1 var2 : base_type_code -> Type}.

      Local Notation eP := (fun t => var1 t * var2 t)%type (only parsing).
      Local Notation "x == y" := (existT eP _ (x, y)).
      Fixpoint flatten_binding_list {t} (x : interp_flat_type_gen var1 t) (y : interp_flat_type_gen var2 t) : list (sigT eP)
        := (match t return interp_flat_type_gen var1 t -> interp_flat_type_gen var2 t -> list _ with
            | Tbase _ => fun x y => (x == y) :: nil
            | Prod t0 t1 => fun x y => @flatten_binding_list _ (snd x) (snd y) ++ @flatten_binding_list _ (fst x) (fst y)
            end x y)%list.

      Inductive wff : list (sigT eP) -> forall {t}, @exprf var1 t -> @exprf var2 t -> Prop :=
      | WfConst : forall t G n, @wff G t (Const n) (Const n)
      | WfVar : forall G (t : base_type_code) x x', List.In (x == x') G -> @wff G t (Var x) (Var x')
      | WfOp : forall G {t} {tR} (e : @exprf var1 t) (e' : @exprf var2 t) op,
          wff G e e'
          -> wff G (Op (tR := tR) op e) (Op (tR := tR) op e')
      | WfLet : forall G t1 t2 e1 e1' (e2 : interp_flat_type_gen var1 t1 -> @exprf var1 t2) e2',
          wff G e1 e1'
          -> (forall x1 x2, wff (flatten_binding_list x1 x2 ++ G) (e2 x1) (e2' x2))
          -> wff G (Let e1 e2) (Let e1' e2')
      | WfPair : forall G {t1} {t2} (e1: @exprf var1 t1) (e2: @exprf var1 t2)
                        (e1': @exprf var2 t1) (e2': @exprf var2 t2),
          wff G e1 e1'
          -> wff G e2 e2'
          -> wff G (Pair e1 e2) (Pair e1' e2').
      Inductive wf : list (sigT eP) -> forall {t}, @expr var1 t -> @expr var2 t -> Prop :=
      | WfReturn : forall t G e e', @wff G t e e' -> wf G (Return e) (Return e')
      | WfAbs : forall A B G e e',
          (forall x x', @wf ((x == x') :: G) B (e x) (e' x'))
          -> @wf G (Arrow A B) (Abs e) (Abs e').
    End wf.

    Definition Wf {t} (E : @Expr t) := forall var1 var2, wf nil (E var1) (E var2).

    Axiom Wf_admitted : forall {t} (E:Expr t), @Wf t E.
  End expr_param.
End language.
Global Arguments Prod {_} _ _.
Global Arguments Arrow {_} _ _.
Global Arguments Tbase {_} _.
Infix "*" := (@Prod _) : ctype_scope.
Notation "A -> B" := (@Arrow _ A B) : ctype_scope.

Ltac admit_Wf := apply Wf_admitted.

Global Arguments Const {_ _ _ _ _} _.
Global Arguments Var {_ _ _ _ _} _.
Global Arguments SmartVar {_ _ _ _ _} _.
Global Arguments SmartVarVar {_ _ _ _ _} _.
Global Arguments SmartConst {_ _ _ _ _} _.
Global Arguments Op {_ _ _ _ _ _} _ _.
Global Arguments Let {_ _ _ _ _} _ {_} _.
Global Arguments Pair {_ _ _ _ _} _ {_} _.
Global Arguments Return {_ _ _ _ _} _.
Global Arguments Abs {_ _ _ _ _ _} _.
Global Arguments interp_type_gen {_} _ _.
Global Arguments interp_flat_type_gen {_} _ _.
Global Arguments interp_type_gen_rel_pointwise {_} _ _ {_} _ _.
Global Arguments interp_type {_} _ _.
Global Arguments wff {_ _ _ _ _} G {t} _ _.
Global Arguments wf {_ _ _ _ _} G {t} _ _.
Global Arguments Wf {_ _ _ t} _.
Global Arguments Interp {_ _ _} interp_op {t} _.
Global Arguments interp {_ _ _} interp_op {t} _.
Global Arguments interpf {_ _ _} interp_op {t} _.

Notation "'slet' x := A 'in' b" := (Let A (fun x => b)) : expr_scope.
Notation "'λ'  x .. y , t" := (Abs (fun x => .. (Abs (fun y => t%expr)) ..)) : expr_scope.
Notation "( x , y , .. , z )" := (Pair .. (Pair x%expr y%expr) .. z%expr) : expr_scope.