aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/Syntax.v
blob: 58000fdca5033b5de198d782e1b0c94b0a320cff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
(** * PHOAS Representation of Gallina *)
Require Import Coq.Strings.String Coq.Classes.RelationClasses Coq.Classes.Morphisms.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Tactics.
Require Import Crypto.Util.Notations.

(** We parameterize the language over a type of basic type codes (for
    things like [Z], [word], [bool]), as well as a type of n-ary
    operations returning one value, and n-ary operations returning two
    values. *)
Delimit Scope ctype_scope with ctype.
Local Open Scope ctype_scope.
Delimit Scope expr_scope with expr.
Local Open Scope expr_scope.
Section language.
  Context (base_type_code : Type).

  Inductive flat_type := Tbase (T : base_type_code) | Unit | Prod (A B : flat_type).
  Bind Scope ctype_scope with flat_type.

  Inductive type := Tflat (T : flat_type) | Arrow (A : base_type_code) (B : type).
  Bind Scope ctype_scope with type.

  Global Coercion Tflat : flat_type >-> type.
  Infix "*" := Prod : ctype_scope.
  Notation "A -> B" := (Arrow A B) : ctype_scope.
  Local Coercion Tbase : base_type_code >-> flat_type.

  Section tuple.
    Context (T : flat_type).
    Fixpoint tuple' n :=
      match n with
      | O => T
      | S n' => (tuple' n' * T)%ctype
      end.
    Definition tuple n :=
      match n with
      | O => Unit
      | S n' => tuple' n'
      end.
  End tuple.

  Section interp.
    Section type.
      Section hetero.
        Context (interp_src_type : base_type_code -> Type).
        Context (interp_flat_type : flat_type -> Type).
        Fixpoint interp_type_gen_hetero (t : type) :=
          match t with
          | Tflat t => interp_flat_type t
          | Arrow x y => (interp_src_type x -> interp_type_gen_hetero y)%type
          end.
      End hetero.
      Definition interp_type_gen (interp_flat_type : flat_type -> Type)
        := interp_type_gen_hetero interp_flat_type interp_flat_type.
    End type.
    Section flat_type.
      Context (interp_base_type : base_type_code -> Type).
      Fixpoint interp_flat_type (t : flat_type) :=
        match t with
        | Tbase t => interp_base_type t
        | Unit => unit
        | Prod x y => prod (interp_flat_type x) (interp_flat_type y)
        end.
      Definition interp_type := interp_type_gen interp_flat_type.
    End flat_type.
  End interp.

  Section expr_param.
    Context (interp_base_type : base_type_code -> Type).
    Context (op : flat_type (* input tuple *) -> flat_type (* output type *) -> Type).
    Local Notation interp_type := (interp_type interp_base_type).
    Local Notation interp_flat_type_gen := interp_flat_type.
    Local Notation interp_flat_type := (interp_flat_type interp_base_type).
    Section expr.
      Context {var : base_type_code -> Type}.

      (** N.B. [Let] binds the components of a pair to separate variables, and does so recursively *)
      Inductive exprf : flat_type -> Type :=
      | TT : exprf Unit
      | Var {t} (v : var t) : exprf t
      | Op {t1 tR} (opc : op t1 tR) (args : exprf t1) : exprf tR
      | LetIn {tx} (ex : exprf tx) {tC} (eC : interp_flat_type_gen var tx -> exprf tC) : exprf tC
      | Pair {tx} (ex : exprf tx) {ty} (ey : exprf ty) : exprf (Prod tx ty).
      Bind Scope expr_scope with exprf.
      Inductive expr : type -> Type :=
      | Return {t} (ex : exprf t) : expr t
      | Abs {src dst} (f : var src -> expr dst) : expr (Arrow src dst).
      Bind Scope expr_scope with expr.
      Global Coercion Return : exprf >-> expr.
      (** Sometimes, we want to deal with partially-interpreted
          expressions, things like [prod (exprf A) (exprf B)] rather
          than [exprf (Prod A B)], or like [prod (var A) (var B)] when
          we start with the type [Prod A B].  These convenience
          functions let us recurse on the type in only one place, and
          replace one kind of pairing operator (be it [pair] or [Pair]
          or anything else) with another kind, and simultaneously
          mapping a function over the base values (e.g., [Var] (for
          turning [var] into [exprf]) or [Const] (for turning
          [interp_base_type] into [exprf])). *)
      Fixpoint smart_interp_flat_map {f g}
               (h : forall x, f x -> g (Tbase x))
               (tt : g Unit)
               (pair : forall A B, g A -> g B -> g (Prod A B))
               {t}
        : interp_flat_type_gen f t -> g t
        := match t return interp_flat_type_gen f t -> g t with
           | Tbase _ => h _
           | Unit => fun _ => tt
           | Prod A B => fun v => pair _ _
                                       (@smart_interp_flat_map f g h tt pair A (fst v))
                                       (@smart_interp_flat_map f g h tt pair B (snd v))
           end.
      Fixpoint smart_interp_map_hetero {f g g'}
               (h : forall x, f x -> g (Tflat (Tbase x)))
               (tt : g Unit)
               (pair : forall A B, g (Tflat A) -> g (Tflat B) -> g (Prod A B))
               (abs : forall A B, (g' A -> g B) -> g (Arrow A B))
               {t}
        : interp_type_gen_hetero g' (interp_flat_type_gen f) t -> g t
        := match t return interp_type_gen_hetero g' (interp_flat_type_gen f) t -> g t with
           | Tflat _ => @smart_interp_flat_map f (fun x => g (Tflat x)) h tt pair _
           | Arrow A B => fun v => abs _ _
                                       (fun x => @smart_interp_map_hetero f g g' h tt pair abs B (v x))
           end.
      Fixpoint smart_interp_map_gen {f g}
                 (h : forall x, f x -> g (Tflat (Tbase x)))
                 (h' : forall x, g (Tflat (Tbase x)) -> f x)
                 (flat_map : forall t, interp_flat_type_gen f t -> g t)
                 (abs : forall A B, (g (Tflat (Tbase A)) -> g B) -> g (Arrow A B))
                 {t}
        : interp_type_gen (interp_flat_type_gen f) t -> g t
        := match t return interp_type_gen (interp_flat_type_gen f) t -> g t with
           | Tflat T => flat_map T
           | Arrow A B => fun v => abs _ _
                                       (fun x => @smart_interp_map_gen f g h h' flat_map abs B (v (h' _ x)))
           end.
      Definition smart_interp_map {f g}
                 (h : forall x, f x -> g (Tflat (Tbase x)))
                 (h' : forall x, g (Tflat (Tbase x)) -> f x)
                 (tt : g Unit)
                 (pair : forall A B, g (Tflat A) -> g (Tflat B) -> g (Prod A B))
                 (abs : forall A B, (g (Tflat (Tbase A)) -> g B) -> g (Arrow A B))
                 {t}
        : interp_type_gen (interp_flat_type_gen f) t -> g t
        := @smart_interp_map_gen f g h h' (@smart_interp_flat_map f (fun x => g (Tflat x)) h tt pair) abs t.
      Fixpoint SmartValf {T} (val : forall t : base_type_code, T t) t : interp_flat_type_gen T t
        := match t return interp_flat_type_gen T t with
           | Tbase _ => val _
           | Unit => tt
           | Prod A B => (@SmartValf T val A, @SmartValf T val B)
           end.
      Fixpoint SmartArrow (A : flat_type) (B : type) : type
        := match A with
           | Tbase A' => Arrow A' B
           | Unit => B
           | Prod A0 A1
             => SmartArrow A0 (SmartArrow A1 B)
           end.
      Fixpoint SmartAbs {A B} {struct A} : forall (f : exprf A -> expr B), expr (SmartArrow A B)
        := match A return (exprf A -> expr B) -> expr (SmartArrow A B) with
           | Tbase x => fun f => Abs (fun x => f (Var x))
           | Unit => fun f => f TT
           | Prod x y => fun f => @SmartAbs x _ (fun x' => @SmartAbs y _ (fun y' => f (Pair x' y')))
           end.

      (** [SmartVar] is like [Var], except that it inserts
          pair-projections and [Pair] as necessary to handle
          [flat_type], and not just [base_type_code] *)
      Definition SmartPairf {t} : interp_flat_type_gen exprf t -> exprf t
        := @smart_interp_flat_map exprf exprf (fun t x => x) TT (fun A B x y => Pair x y) t.
      Definition SmartVarf {t} : interp_flat_type_gen var t -> exprf t
        := @smart_interp_flat_map var exprf (fun t => Var) TT (fun A B x y => Pair x y) t.
      Definition SmartVarfMap {var var'} (f : forall t, var t -> var' t) {t}
        : interp_flat_type_gen var t -> interp_flat_type_gen var' t
        := @smart_interp_flat_map var (interp_flat_type_gen var') f tt (fun A B x y => pair x y) t.
      Definition SmartFlatTypeMap {var'} (f : forall t, var' t -> base_type_code) {t}
        : interp_flat_type_gen var' t -> flat_type
        := @smart_interp_flat_map var' (fun _ => flat_type) f Unit (fun _ _ => Prod) t.
      Fixpoint SmartFlatTypeMapInterp {var' var''} (f : forall t, var' t -> base_type_code)
                 (fv : forall t v, var'' (f t v)) t {struct t}
        : forall v, interp_flat_type_gen var'' (SmartFlatTypeMap f (t:=t) v)
        := match t return forall v, interp_flat_type_gen var'' (SmartFlatTypeMap f (t:=t) v) with
           | Tbase x => fv _
           | Unit => fun v => v
           | Prod A B => fun xy => (@SmartFlatTypeMapInterp _ _ f fv A (fst xy),
                                    @SmartFlatTypeMapInterp _ _ f fv B (snd xy))
           end.
      Fixpoint SmartFlatTypeMapUnInterp var' var'' var''' (f : forall t, var' t -> base_type_code)
               (fv : forall t (v : var' t), var'' (f t v) -> var''' t)
               {t} {struct t}
        : forall v, interp_flat_type_gen var'' (SmartFlatTypeMap f (t:=t) v)
                    -> interp_flat_type_gen var''' t
        := match t return forall v, interp_flat_type_gen var'' (SmartFlatTypeMap f (t:=t) v)
                                    -> interp_flat_type_gen var''' t with
           | Tbase x => fv _
           | Unit => fun _ v => v
           | Prod A B => fun v xy => (@SmartFlatTypeMapUnInterp _ _ _ f fv A _ (fst xy),
                                      @SmartFlatTypeMapUnInterp _ _ _ f fv B _ (snd xy))
           end.
      Definition SmartVarMap {var var'} (f : forall t, var t -> var' t) (f' : forall t, var' t -> var t) {t}
        : interp_type_gen (interp_flat_type_gen var) t -> interp_type_gen (interp_flat_type_gen var') t
        := @smart_interp_map var (interp_type_gen (interp_flat_type_gen var')) f f' tt (fun A B x y => pair x y) (fun A B f x => f x) t.
      Definition SmartVarMap_hetero {vars vars' var var'} (f : forall t, var t -> var' t) (f' : forall t, vars' t -> vars t) {t}
        : interp_type_gen_hetero vars (interp_flat_type_gen var) t -> interp_type_gen_hetero vars' (interp_flat_type_gen var') t
        := @smart_interp_map_hetero var (interp_type_gen_hetero vars' (interp_flat_type_gen var')) vars f tt (fun A B x y => pair x y) (fun A B f x => f (f' _ x)) t.
      Definition SmartVarVarf {t} : interp_flat_type_gen var t -> interp_flat_type_gen exprf t
        := SmartVarfMap (fun t => Var).
      (*Definition SmartConstf {t} : interp_flat_type t -> interp_flat_type_gen exprf t
        := SmartVarfMap (fun t => Const (t:=t)).*)
    End expr.

    Definition Expr (t : type) := forall var, @expr var t.

    Section interp.
      Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).

      Definition interpf_step
                 (interpf : forall {t} (e : @exprf interp_flat_type t), interp_flat_type t)
                 {t} (e : @exprf interp_flat_type t) : interp_flat_type t
        := match e in exprf t return interp_flat_type t with
           | TT => tt
           | Var _ x => x
           | Op _ _ op args => @interp_op _ _ op (@interpf _ args)
           | LetIn _ ex _ eC => dlet x := @interpf _ ex in @interpf _ (eC x)
           | Pair _ ex _ ey => (@interpf _ ex, @interpf _ ey)
           end.

      Fixpoint interpf {t} e
        := @interpf_step (@interpf) t e.

      Fixpoint interp {t} (e : @expr interp_type t) : interp_type t
        := match e in expr t return interp_type t with
           | Return _ x => interpf x
           | Abs _ _ f => fun x => @interp _ (f x)
           end.

      Definition Interp {t} (E : Expr t) : interp_type t := interp (E _).
    End interp.

    Section map.
      Context {var1 var2 : base_type_code -> Type}.
      Context (fvar12 : forall t, var1 t -> var2 t)
              (fvar21 : forall t, var2 t -> var1 t).

      Fixpoint mapf_interp_flat_type {t} (e : interp_flat_type_gen var2 t) {struct t}
        : interp_flat_type_gen var1 t
        := match t return interp_flat_type_gen _ t -> interp_flat_type_gen _ t with
           | Tbase _ => fvar21 _
           | Unit => fun v : unit => v
           | Prod x y => fun xy => (@mapf_interp_flat_type _ (fst xy),
                                    @mapf_interp_flat_type _ (snd xy))
           end e.

      Fixpoint mapf {t} (e : @exprf var1 t) : @exprf var2 t
        := match e in exprf t return exprf t with
           | TT => TT
           | Var _ x => Var (fvar12 _ x)
           | Op _ _ op args => Op op (@mapf _ args)
           | LetIn _ ex _ eC => LetIn (@mapf _ ex) (fun x => @mapf _ (eC (mapf_interp_flat_type x)))
           | Pair _ ex _ ey => Pair (@mapf _ ex) (@mapf _ ey)
           end.
    End map.

    Section wf.
      Context {var1 var2 : base_type_code -> Type}.

      Local Notation eP := (fun t => var1 t * var2 t)%type (only parsing).
      Local Notation "x == y" := (existT eP _ (x, y)).
      Fixpoint flatten_binding_list {t} (x : interp_flat_type_gen var1 t) (y : interp_flat_type_gen var2 t) : list (sigT eP)
        := (match t return interp_flat_type_gen var1 t -> interp_flat_type_gen var2 t -> list _ with
            | Tbase _ => fun x y => (x == y) :: nil
            | Unit => fun x y => nil
            | Prod t0 t1 => fun x y => @flatten_binding_list _ (snd x) (snd y) ++ @flatten_binding_list _ (fst x) (fst y)
            end x y)%list.

      Inductive wff : list (sigT eP) -> forall {t}, @exprf var1 t -> @exprf var2 t -> Prop :=
      | WfTT : forall G, @wff G _ TT TT
      | WfVar : forall G (t : base_type_code) x x', List.In (x == x') G -> @wff G t (Var x) (Var x')
      | WfOp : forall G {t} {tR} (e : @exprf var1 t) (e' : @exprf var2 t) op,
          wff G e e'
          -> wff G (Op (tR := tR) op e) (Op (tR := tR) op e')
      | WfLetIn : forall G t1 t2 e1 e1' (e2 : interp_flat_type_gen var1 t1 -> @exprf var1 t2) e2',
          wff G e1 e1'
          -> (forall x1 x2, wff (flatten_binding_list x1 x2 ++ G) (e2 x1) (e2' x2))
          -> wff G (LetIn e1 e2) (LetIn e1' e2')
      | WfPair : forall G {t1} {t2} (e1: @exprf var1 t1) (e2: @exprf var1 t2)
                        (e1': @exprf var2 t1) (e2': @exprf var2 t2),
          wff G e1 e1'
          -> wff G e2 e2'
          -> wff G (Pair e1 e2) (Pair e1' e2').
      Inductive wf : list (sigT eP) -> forall {t}, @expr var1 t -> @expr var2 t -> Prop :=
      | WfReturn : forall t G e e', @wff G t e e' -> wf G (Return e) (Return e')
      | WfAbs : forall A B G e e',
          (forall x x', @wf ((x == x') :: G) B (e x) (e' x'))
          -> @wf G (Arrow A B) (Abs e) (Abs e').
    End wf.

    Definition Wf {t} (E : @Expr t) := forall var1 var2, wf nil (E var1) (E var2).

    Axiom Wf_admitted : forall {t} (E:Expr t), @Wf t E.
  End expr_param.
End language.
Global Arguments tuple' {_}%type_scope _%ctype_scope _%nat_scope.
Global Arguments tuple {_}%type_scope _%ctype_scope _%nat_scope.
Global Arguments Unit {_}%type_scope.
Global Arguments Prod {_}%type_scope (_ _)%ctype_scope.
Global Arguments Arrow {_}%type_scope (_ _)%ctype_scope.
Global Arguments Tbase {_}%type_scope _%ctype_scope.
Global Arguments Tflat {_}%type_scope _%ctype_scope.

Ltac admit_Wf := apply Wf_admitted.

Global Arguments Var {_ _ _ _} _.
Global Arguments SmartVarf {_ _ _ _} _.
Global Arguments SmartPairf {_ _ _ t} _.
Global Arguments SmartValf {_} T _ t.
Global Arguments SmartVarVarf {_ _ _ _} _.
Global Arguments SmartVarfMap {_ _ _} _ {_} _.
Global Arguments SmartFlatTypeMap {_ _} _ {_} _.
Global Arguments SmartFlatTypeMapInterp {_ _ _ _} _ {_} _.
Global Arguments SmartFlatTypeMapUnInterp {_ _ _ _ _} fv {_ _} _.
Global Arguments SmartVarMap_hetero {_ _ _ _ _} _ _ {_} _.
Global Arguments SmartVarMap {_ _ _} _ _ {_} _.
(*Global Arguments SmartConstf {_ _ _ _ _} _.*)
Global Arguments TT {_ _ _}.
Global Arguments Op {_ _ _ _ _} _ _.
Global Arguments LetIn {_ _ _ _} _ {_} _.
Global Arguments Pair {_ _ _ _} _ {_} _.
Global Arguments Return {_ _ _ _} _.
Global Arguments Abs {_ _ _ _ _} _.
Global Arguments SmartAbs {_ _ _ _ _} _.
Global Arguments mapf_interp_flat_type {_ _ _} _ {t} _.
Global Arguments interp_type_gen_hetero {_} _ _ _.
Global Arguments interp_type_gen {_} _ _.
Global Arguments interp_flat_type {_} _ _.
Global Arguments interp_type {_} _ _.
Global Arguments wff {_ _ _ _} G {t} _ _.
Global Arguments wf {_ _ _ _} G {t} _ _.
Global Arguments Wf {_ _ t} _.
Global Arguments Interp {_ _ _} interp_op {t} _.
Global Arguments interp {_ _ _} interp_op {t} _.
Global Arguments interpf {_ _ _} interp_op {t} _.

Section hetero_type.
  Fixpoint flatten_flat_type {base_type_code} (t : flat_type (flat_type base_type_code)) : flat_type base_type_code
    := match t with
       | Tbase T => T
       | Unit => Unit
       | Prod A B => Prod (@flatten_flat_type _ A) (@flatten_flat_type _ B)
       end.

  Section smart_flat_type_map2.
    Context {base_type_code1 base_type_code2 : Type}.

    Definition SmartFlatTypeMap2 {var' : base_type_code1 -> Type} (f : forall t, var' t -> flat_type base_type_code2) {t}
      : interp_flat_type var' t -> flat_type base_type_code2
      := @smart_interp_flat_map base_type_code1 var' (fun _ => flat_type base_type_code2) f Unit (fun _ _ => Prod) t.
    Fixpoint SmartFlatTypeMapInterp2 {var' var''} (f : forall t, var' t -> flat_type base_type_code2)
             (fv : forall t v, interp_flat_type var'' (f t v)) t {struct t}
      : forall v, interp_flat_type var'' (SmartFlatTypeMap2 f (t:=t) v)
      := match t return forall v, interp_flat_type var'' (SmartFlatTypeMap2 f (t:=t) v) with
         | Tbase x => fv _
         | Unit => fun v => v
         | Prod A B => fun xy => (@SmartFlatTypeMapInterp2 _ _ f fv A (fst xy),
                                  @SmartFlatTypeMapInterp2 _ _ f fv B (snd xy))
         end.
    Fixpoint SmartFlatTypeMapUnInterp2 var' var'' var''' (f : forall t, var' t -> flat_type base_type_code2)
             (fv : forall t (v : var' t), interp_flat_type var'' (f t v) -> var''' t)
             {t} {struct t}
      : forall v, interp_flat_type var'' (SmartFlatTypeMap2 f (t:=t) v)
                  -> interp_flat_type var''' t
      := match t return forall v, interp_flat_type var'' (SmartFlatTypeMap2 f (t:=t) v)
                                  -> interp_flat_type var''' t with
         | Tbase x => fv _
         | Unit => fun _ v => v
         | Prod A B => fun v xy => (@SmartFlatTypeMapUnInterp2 _ _ _ f fv A _ (fst xy),
                                    @SmartFlatTypeMapUnInterp2 _ _ _ f fv B _ (snd xy))
         end.
  End smart_flat_type_map2.
End hetero_type.

Global Arguments SmartFlatTypeMap2 {_ _ _} _ {_} _.
Global Arguments SmartFlatTypeMapInterp2 {_ _ _ _ _} _ {_} _.
Global Arguments SmartFlatTypeMapUnInterp2 {_ _ _ _ _ _} fv {_ _} _.

Module Export Notations.
  Notation "()" := (@Unit _) : ctype_scope.
  Notation "A * B" := (@Prod _ A B) : ctype_scope.
  Notation "A -> B" := (@Arrow _ A B) : ctype_scope.
  Notation "'slet' x := A 'in' b" := (LetIn A (fun x => b)) : expr_scope.
  Notation "'λ'  x .. y , t" := (Abs (fun x => .. (Abs (fun y => t%expr)) ..)) : expr_scope.
  Notation "( x , y , .. , z )" := (Pair .. (Pair x%expr y%expr) .. z%expr) : expr_scope.
  Notation "( )" := TT : expr_scope.
  Notation "()" := TT : expr_scope.
  Bind Scope ctype_scope with flat_type.
  Bind Scope ctype_scope with type.
End Notations.