aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/LinearizeInterp.v
blob: ffa7119c6d5f3751d5b126b573791a6ce4422d23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
(** * Linearize: Place all and only operations in let binders *)
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Reflection.Relations.
Require Import Crypto.Reflection.LinearizeWf.
Require Import Crypto.Reflection.InterpProofs.
Require Import Crypto.Reflection.Linearize.
Require Import Crypto.Util.Tactics Crypto.Util.Sigma Crypto.Util.Prod.


Local Open Scope ctype_scope.
Section language.
  Context (base_type_code : Type).
  Context (interp_base_type : base_type_code -> Type).
  Context (op : flat_type base_type_code -> flat_type base_type_code -> Type).
  Context (interp_op : forall src dst, op src dst -> interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst).

  Local Notation flat_type := (flat_type base_type_code).
  Local Notation type := (type base_type_code).
  Local Notation interp_type := (interp_type interp_base_type).
  Local Notation interp_flat_type := (interp_flat_type interp_base_type).
  Local Notation exprf := (@exprf base_type_code op).
  Local Notation expr := (@expr base_type_code op).
  Local Notation Expr := (@Expr base_type_code op).
  Local Notation wff := (@wff base_type_code op).
  Local Notation wf := (@wf base_type_code op).

  Local Hint Extern 1 => eapply interpf_SmartVarVarf.

  Local Ltac t_fin :=
    repeat match goal with
           | _ => reflexivity
           | _ => progress unfold LetIn.Let_In
           | _ => progress simpl in *
           | _ => progress intros
           | _ => progress inversion_sigma
           | _ => progress inversion_prod
           | _ => solve [ intuition eauto ]
           | _ => apply (f_equal (interp_op _ _ _))
           | _ => apply (f_equal2 (@pair _ _))
           | _ => progress specialize_by assumption
           | _ => progress subst
           | [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H
           | [ H : or _ _ |- _ ] => destruct H
           | _ => progress break_match
           | _ => rewrite <- !surjective_pairing
           | [ H : ?x = _, H' : context[?x] |- _ ] => rewrite H in H'
           | [ H : _ |- _ ] => apply H
           | [ H : _ |- _ ] => rewrite H
           end.

  Lemma interpf_under_letsf {t tC} (ex : exprf t) (eC : _ -> exprf tC)
    : interpf interp_op (under_letsf ex eC) = let x := interpf interp_op ex in interpf interp_op (eC x).
  Proof.
    clear.
    induction ex; t_fin.
  Qed.

  Lemma interpf_linearizef {t} e
    : interpf interp_op (linearizef (t:=t) e) = interpf interp_op e.
  Proof.
    clear.
    induction e;
      repeat first [ progress rewrite ?interpf_under_letsf, ?interpf_SmartVarf
                   | progress simpl
                   | t_fin ].
  Qed.

  Local Hint Resolve interpf_linearizef.

  Lemma interp_linearize {t} e
    : interp_type_gen_rel_pointwise (fun _ => @eq _)
                                    (interp interp_op (linearize (t:=t) e))
                                    (interp interp_op e).
  Proof.
    induction e; eauto.
    eapply interpf_linearizef.
  Qed.

  Lemma Interp_Linearize {t} (e : Expr t)
    : interp_type_gen_rel_pointwise (fun _ => @eq _)
                                    (Interp interp_op (Linearize e))
                                    (Interp interp_op e).
  Proof.
    unfold Interp, Linearize.
    eapply interp_linearize.
  Qed.
End language.