aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/ExprInversion.v
blob: 450824f2f70783bdfba91efa5fdd825e83a76c66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Reflection.TypeInversion.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Notations.

Section language.
  Context {base_type_code : Type}
          {interp_base_type : base_type_code -> Type}
          {op : flat_type base_type_code -> flat_type base_type_code -> Type}.

  Local Notation flat_type := (flat_type base_type_code).
  Local Notation type := (type base_type_code).
  Local Notation interp_type := (interp_type interp_base_type).
  Local Notation interp_flat_type_gen := interp_flat_type.
  Local Notation interp_flat_type := (interp_flat_type interp_base_type).
  Local Notation Expr := (@Expr base_type_code op).

  Section with_var.
    Context {var : base_type_code -> Type}.

    Local Notation exprf := (@exprf base_type_code op var).
    Local Notation expr := (@expr base_type_code op var).

    Definition invert_Var {t} (e : exprf (Tbase t)) : option (var t)
      := match e in Syntax.exprf _ _ t'
               return option (var match t' with
                                  | Tbase t' => t'
                                  | _ => t
                                  end)
         with
         | Var _ v => Some v
         | _ => None
         end.
    Definition invert_Op {t} (e : exprf t) : option { t1 : flat_type & op t1 t * exprf t1 }%type
      := match e with Op _ _ opc args => Some (existT _ _ (opc, args)) | _ => None end.
    Definition invert_LetIn {A} (e : exprf A) : option { B : _ & exprf B * (Syntax.interp_flat_type var B -> exprf A) }%type
      := match e in Syntax.exprf _ _ t return option { B : _ & _ * (_ -> exprf t) }%type with
         | LetIn _ ex _ eC => Some (existT _ _ (ex, eC))
         | _ => None
         end.
    Definition invert_Pair {A B} (e : exprf (Prod A B)) : option (exprf A * exprf B)
      := match e in Syntax.exprf _ _ t
               return option match t with
                             | Prod _ _ => _
                             | _ => unit
                             end with
         | Pair _ x _ y => Some (x, y)%core
         | _ => None
         end.
    Definition invert_Abs {T} (e : expr T) : interp_flat_type_gen var (domain T) -> exprf (codomain T)
      := match e with Abs _ _ f => f end.

    Definition exprf_code {t} (e : exprf t) : exprf t -> Prop
      := match e with
         | TT => fun e' => TT = e'
         | Var _ v => fun e' => invert_Var e' = Some v
         | Pair _ x _ y => fun e' => invert_Pair e' = Some (x, y)%core
         | Op _ _ opc args => fun e' => invert_Op e' = Some (existT _ _ (opc, args)%core)
         | LetIn _ ex _ eC => fun e' => invert_LetIn e' = Some (existT _ _ (ex, eC)%core)
         end.

    Definition expr_code {t} (e1 e2 : expr t) : Prop
      := invert_Abs e1 = invert_Abs e2.

    Definition exprf_encode {t} (x y : exprf t) : x = y -> exprf_code x y.
    Proof. intro p; destruct p, x; reflexivity. Defined.
    Definition expr_encode {t} (x y : expr t) : x = y -> expr_code x y.
    Proof. intro p; destruct p, x; reflexivity. Defined.

    Local Ltac t' :=
      repeat first [ intro
                   | progress simpl in *
                   | reflexivity
                   | assumption
                   | progress destruct_head False
                   | progress subst
                   | progress inversion_option
                   | progress inversion_sigma
                   | progress break_match ].
    Local Ltac t :=
      lazymatch goal with
      | [ |- _ = Some ?v -> ?e = _ ]
        => revert v;
           refine match e with
                  | Var _ _ => _
                  | _ => _
                  end
      | [ |- _ = ?v -> ?e = _ ]
        => revert v;
           refine match e with
                  | Abs _ _ _ => _
                  end
      end;
      t'.

    Lemma invert_Var_Some {t e v}
      : @invert_Var t e = Some v -> e = Var v.
    Proof. t. Defined.

    Lemma invert_Op_Some {t e v}
      : @invert_Op t e = Some v -> e = Op (fst (projT2 v)) (snd (projT2 v)).
    Proof. t. Defined.

    Lemma invert_LetIn_Some {t e v}
      : @invert_LetIn t e = Some v -> e = LetIn (fst (projT2 v)) (snd (projT2 v)).
    Proof. t. Defined.

    Lemma invert_Pair_Some {A B e v}
      : @invert_Pair A B e = Some v -> e = Pair (fst v) (snd v).
    Proof. t. Defined.

    Lemma invert_Abs_Some {A B e v}
      : @invert_Abs (Arrow A B) e = v -> e = Abs v.
    Proof. t. Defined.

    Definition exprf_decode {t} (x y : exprf t) : exprf_code x y -> x = y.
    Proof.
      destruct x; simpl; trivial;
        intro H;
        first [ apply invert_Var_Some in H
              | apply invert_Op_Some in H
              | apply invert_LetIn_Some in H
              | apply invert_Pair_Some in H ];
        symmetry; assumption.
    Defined.
    Definition expr_decode {t} (x y : expr t) : expr_code x y -> x = y.
    Proof.
      destruct x; unfold expr_code; simpl.
      intro H; symmetry in H.
      apply invert_Abs_Some in H.
      symmetry; assumption.
    Defined.
    Definition path_exprf_rect {t} {x y : exprf t} (Q : x = y -> Type)
               (f : forall p, Q (exprf_decode x y p))
      : forall p, Q p.
    Proof. intro p; specialize (f (exprf_encode x y p)); destruct x, p; exact f. Defined.
    Definition path_expr_rect {t} {x y : expr t} (Q : x = y -> Type)
               (f : forall p, Q (expr_decode x y p))
      : forall p, Q p.
    Proof. intro p; specialize (f (expr_encode x y p)); destruct x, p; exact f. Defined.
  End with_var.

  Lemma interpf_invert_Abs interp_op {T e} x
    : Syntax.interpf interp_op (@invert_Abs interp_base_type T e x)
      = Syntax.interp interp_op e x.
  Proof. destruct e; reflexivity. Qed.
End language.

Global Arguments invert_Var {_ _ _ _} _.
Global Arguments invert_Op {_ _ _ _} _.
Global Arguments invert_LetIn {_ _ _ _} _.
Global Arguments invert_Pair {_ _ _ _ _} _.
Global Arguments invert_Abs {_ _ _ _} _ _.

Ltac invert_one_expr e :=
  preinvert_one_type e;
  intros ? e;
  destruct e;
  try exact I.

Ltac invert_expr_step :=
  match goal with
  | [ e : exprf _ _ (Tbase _) |- _ ] => invert_one_expr e
  | [ e : exprf _ _ (Prod _ _) |- _ ] => invert_one_expr e
  | [ e : exprf _ _ Unit |- _ ] => invert_one_expr e
  | [ e : expr _ _ (Arrow _ _) |- _ ] => invert_one_expr e
  end.

Ltac invert_expr := repeat invert_expr_step.

Ltac invert_match_expr_step :=
  match goal with
  | [ |- appcontext[match ?e with TT => _ | _ => _ end] ]
    => invert_one_expr e
  | [ |- appcontext[match ?e with Abs _ _ _ => _ end] ]
    => invert_one_expr e
  | [ H : appcontext[match ?e with TT => _ | _ => _ end] |- _ ]
    => invert_one_expr e
  | [ H : appcontext[match ?e with Abs _ _ _ => _ end] |- _ ]
    => invert_one_expr e
  end.

Ltac invert_match_expr := repeat invert_match_expr_step.

Ltac invert_expr_subst_step_helper guard_tac :=
  match goal with
  | [ H : invert_Var ?e = Some _ |- _ ] => guard_tac H; apply invert_Var_Some in H
  | [ H : invert_Op ?e = Some _ |- _ ] => guard_tac H; apply invert_Op_Some in H
  | [ H : invert_LetIn ?e = Some _ |- _ ] => guard_tac H; apply invert_LetIn_Some in H
  | [ H : invert_Pair ?e = Some _ |- _ ] => guard_tac H; apply invert_Pair_Some in H
  | [ e : expr _ _ _ |- _ ]
    => guard_tac e;
       let f := fresh e in
       let H := fresh in
       rename e into f;
       remember (invert_Abs f) as e eqn:H;
       symmetry in H;
       apply invert_Abs_Some in H;
       subst f
  | [ H : invert_Abs ?e = _ |- _ ] => guard_tac H; apply invert_Abs_Some in H
  end.
Ltac invert_expr_subst_step :=
  first [ invert_expr_subst_step_helper ltac:(fun _ => idtac)
        | subst ].
Ltac invert_expr_subst := repeat invert_expr_subst_step.

Ltac induction_expr_in_using H rect :=
  induction H as [H] using (rect _ _ _);
  cbv [exprf_code expr_code invert_Var invert_LetIn invert_Pair invert_Op invert_Abs] in H;
  try lazymatch type of H with
      | Some _ = Some _ => apply option_leq_to_eq in H; unfold option_eq in H
      | Some _ = None => exfalso; clear -H; solve [ inversion H ]
      | None = Some _ => exfalso; clear -H; solve [ inversion H ]
      end;
  let H1 := fresh H in
  let H2 := fresh H in
  try lazymatch type of H with
      | existT _ _ _ = existT _ _ _ => induction_sigma_in_using H @path_sigT_rect
      end;
  try lazymatch type of H2 with
      | _ = (_, _)%core => induction_path_prod H2
      end.
Ltac inversion_expr_step :=
  match goal with
  | [ H : _ = Var _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : _ = TT |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : _ = Op _ _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : _ = Pair _ _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : _ = LetIn _ _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : _ = Abs _ |- _ ]
    => induction_expr_in_using H @path_expr_rect
  | [ H : Var _ = _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : TT = _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : Op _ _ = _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : Pair _ _ = _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : LetIn _ _ = _ |- _ ]
    => induction_expr_in_using H @path_exprf_rect
  | [ H : Abs _ = _ |- _ ]
    => induction_expr_in_using H @path_expr_rect
  end.
Ltac inversion_expr := repeat inversion_expr_step.