aboutsummaryrefslogtreecommitdiff
path: root/src/Reflection/ExprInversion.v
blob: 6bf813bf7262fd23992660a700ce2f6aa7e68949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Require Import Crypto.Reflection.Syntax.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Notations.

Section language.
  Context {base_type_code : Type}
          {interp_base_type : base_type_code -> Type}
          {op : flat_type base_type_code -> flat_type base_type_code -> Type}.

  Local Notation flat_type := (flat_type base_type_code).
  Local Notation type := (type base_type_code).
  Local Notation interp_type := (interp_type interp_base_type).
  Local Notation interp_flat_type_gen := interp_flat_type.
  Local Notation interp_flat_type := (interp_flat_type interp_base_type).
  Local Notation Expr := (@Expr base_type_code op).

  Fixpoint codomain (t : type) : flat_type
    := match t with
       | Tflat T => T
       | Arrow src dst => codomain dst
       end.

  Section with_var.
    Context {var : base_type_code -> Type}.

    Local Notation exprf := (@exprf base_type_code op var).
    Local Notation expr := (@expr base_type_code op var).

    Definition invert_Var {t} (e : exprf (Tbase t)) : option (var t)
      := match e in Syntax.exprf _ _ t'
               return option (var match t' with
                                  | Tbase t' => t'
                                  | _ => t
                                  end)
         with
         | Var _ v => Some v
         | _ => None
         end.
    Definition invert_Op {t} (e : exprf t) : option { t1 : flat_type & op t1 t * exprf t1 }%type
      := match e with Op _ _ opc args => Some (existT _ _ (opc, args)) | _ => None end.
    Definition invert_LetIn {A} (e : exprf A) : option { B : _ & exprf B * (Syntax.interp_flat_type var B -> exprf A) }%type
      := match e in Syntax.exprf _ _ t return option { B : _ & _ * (_ -> exprf t) }%type with
         | LetIn _ ex _ eC => Some (existT _ _ (ex, eC))
         | _ => None
         end.
    Definition invert_Pair {A B} (e : exprf (Prod A B)) : option (exprf A * exprf B)
      := match e in Syntax.exprf _ _ t
               return option match t with
                             | Prod _ _ => _
                             | _ => unit
                             end with
         | Pair _ x _ y => Some (x, y)%core
         | _ => None
         end.
    Definition invert_Abs {A B} (e : expr (Arrow A B)) : var A -> expr B
      := match e with Abs _ _ f => f end.
    Definition invert_Return {t} (e : expr (Tflat t)) : exprf t
      := match e with Return _ v => v end.

    Local Ltac t' :=
      repeat first [ intro
                   | progress simpl in *
                   | reflexivity
                   | assumption
                   | progress destruct_head False
                   | progress subst
                   | progress inversion_option
                   | progress inversion_sigma
                   | progress break_match ].
    Local Ltac t :=
      lazymatch goal with
      | [ |- _ = Some ?v -> ?e = _ ]
        => revert v;
           refine match e with
                  | Var _ _ => _
                  | _ => _
                  end
      | [ |- _ = ?v -> ?e = _ ]
        => revert v;
           refine match e with
                  | Abs _ _ _ => _
                  | Return _ _ => _
                  end
      end;
      t'.

    Lemma invert_Var_Some {t e v}
      : @invert_Var t e = Some v -> e = Var v.
    Proof. t. Defined.

    Lemma invert_Op_Some {t e v}
      : @invert_Op t e = Some v -> e = Op (fst (projT2 v)) (snd (projT2 v)).
    Proof. t. Defined.

    Lemma invert_LetIn_Some {t e v}
      : @invert_LetIn t e = Some v -> e = LetIn (fst (projT2 v)) (snd (projT2 v)).
    Proof. t. Defined.

    Lemma invert_Pair_Some {A B e v}
      : @invert_Pair A B e = Some v -> e = Pair (fst v) (snd v).
    Proof. t. Defined.

    Lemma invert_Abs_Some {A B e v}
      : @invert_Abs A B e = v -> e = Abs v.
    Proof. t. Defined.

    Lemma invert_Return_Some {t e v}
      : @invert_Return t e = v -> e = Return v.
    Proof. t. Qed.
  End with_var.

  Lemma interpf_invert_Abs interp_op {A B e} x
    : Syntax.interp interp_op (@invert_Abs interp_base_type A B e x)
      = Syntax.interp interp_op e x.
  Proof.
    refine (match e in expr _ _ t
                  return match t return expr _ _ t -> _ with
                         | Arrow src dst
                           => fun e
                              => (forall x : interp_base_type src,
                                     interp _ (invert_Abs e x) = interp _ e x)
                         | Tflat _ => fun _ => True
                         end e with
            | Abs _ _ _ => fun _ => eq_refl
            | Return _ _ => I
            end x).
  Qed.
End language.

Global Arguments codomain {_} _.
Global Arguments invert_Var {_ _ _ _} _.
Global Arguments invert_Op {_ _ _ _} _.
Global Arguments invert_LetIn {_ _ _ _} _.
Global Arguments invert_Pair {_ _ _ _ _} _.
Global Arguments invert_Abs {_ _ _ _ _} _ _.
Global Arguments invert_Return {_ _ _ _} _.

Ltac invert_expr_subst_step :=
  match goal with
  | [ H : invert_Var ?e = Some _ |- _ ] => apply invert_Var_Some in H
  | [ H : invert_Op ?e = Some _ |- _ ] => apply invert_Op_Some in H
  | [ H : invert_LetIn ?e = Some _ |- _ ] => apply invert_LetIn_Some in H
  | [ H : invert_Pair ?e = Some _ |- _ ] => apply invert_Pair_Some in H
  | [ H : invert_Abs ?e = _ |- _ ] => apply invert_Abs_Some in H
  | [ H : invert_Return ?e = _ |- _ ] => apply invert_Return_Some in H
  | _ => progress subst
  end.
Ltac invert_expr_subst := repeat invert_expr_subst_step.