aboutsummaryrefslogtreecommitdiff
path: root/src/ModularArithmetic/Pow2BaseProofs.v
blob: e06df932892ff1728784329043f76dc50a4a1698 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
Require Import Zpower ZArith.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Require Import Coq.Lists.List.
Require Import Crypto.Util.ListUtil Crypto.Util.ZUtil.
Require Import Crypto.ModularArithmetic.Pow2Base Crypto.BaseSystemProofs.
Require Crypto.BaseSystem.
Local Open Scope Z_scope.

Section Pow2BaseProofs.
  Context {limb_widths} (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Notation base := (base_from_limb_widths limb_widths).

  Lemma base_from_limb_widths_length : length base = length limb_widths.
  Proof.
    induction limb_widths; try reflexivity.
    simpl; rewrite map_length.
    simpl in limb_widths_nonneg.
    rewrite IHl; auto.
  Qed.

  Lemma sum_firstn_limb_widths_nonneg : forall n, 0 <= sum_firstn limb_widths n.
  Proof.
    unfold sum_firstn; intros.
    apply fold_right_invariant; try omega.
    intros y In_y_lw ? ?.
    apply Z.add_nonneg_nonneg; try assumption.
    apply limb_widths_nonneg.
    eapply In_firstn; eauto.
  Qed. Hint Resolve sum_firstn_limb_widths_nonneg.

  Lemma base_from_limb_widths_step : forall i b w, (S i < length base)%nat ->
    nth_error base i = Some b ->
    nth_error limb_widths i = Some w ->
    nth_error base (S i) = Some (two_p w * b).
  Proof.
    induction limb_widths; intros ? ? ? ? nth_err_w nth_err_b;
      unfold base_from_limb_widths in *; fold base_from_limb_widths in *;
      [rewrite (@nil_length0 Z) in *; omega | ].
    simpl in *; rewrite map_length in *.
    case_eq i; intros; subst.
    + subst; apply nth_error_first in nth_err_w.
      apply nth_error_first in nth_err_b; subst.
      apply map_nth_error.
      case_eq l; intros; subst; [simpl in *; omega | ].
      unfold base_from_limb_widths; fold base_from_limb_widths.
      reflexivity.
    + simpl in nth_err_w.
      apply nth_error_map in nth_err_w.
      destruct nth_err_w as [x [A B]].
      subst.
      replace (two_p w * (two_p a * x)) with (two_p a * (two_p w * x)) by ring.
      apply map_nth_error.
      apply IHl; auto. omega.
  Qed.


  Lemma nth_error_base : forall i, (i < length base)%nat ->
    nth_error base i = Some (two_p (sum_firstn limb_widths i)).
  Proof.
    induction i; intros.
    + unfold sum_firstn, base_from_limb_widths in *; case_eq limb_widths; try reflexivity.
      intro lw_nil; rewrite lw_nil, (@nil_length0 Z) in *; omega.
    + assert (i < length base)%nat as lt_i_length by omega.
      specialize (IHi lt_i_length).
      rewrite base_from_limb_widths_length in lt_i_length.
      destruct (nth_error_length_exists_value _ _ lt_i_length) as [w nth_err_w].
      erewrite base_from_limb_widths_step; eauto.
      f_equal.
      simpl.
      destruct (NPeano.Nat.eq_dec i 0).
      - subst; unfold sum_firstn; simpl.
        apply nth_error_exists_first in nth_err_w.
        destruct nth_err_w as [l' lw_destruct]; subst.
        simpl; ring_simplify.
        f_equal; ring.
      - erewrite sum_firstn_succ; eauto.
        symmetry.
        apply two_p_is_exp; auto using sum_firstn_limb_widths_nonneg.
        apply limb_widths_nonneg.
        eapply nth_error_value_In; eauto.
  Qed.

  Lemma nth_default_base : forall d i, (i < length base)%nat ->
    nth_default d base i = 2 ^ (sum_firstn limb_widths i).
  Proof.
    intros ? ? i_lt_length.
    destruct (nth_error_length_exists_value _ _ i_lt_length) as [x nth_err_x].
    unfold nth_default.
    rewrite nth_err_x.
    rewrite nth_error_base in nth_err_x by assumption.
    rewrite two_p_correct in nth_err_x.
    congruence.
  Qed.

  Lemma base_succ : forall i, ((S i) < length base)%nat ->
    nth_default 0 base (S i) mod nth_default 0 base i = 0.
  Proof.
    intros.
    repeat rewrite nth_default_base by omega.
    apply Z.mod_same_pow.
    split; [apply sum_firstn_limb_widths_nonneg | ].
    destruct (NPeano.Nat.eq_dec i 0); subst.
      + case_eq limb_widths; intro; unfold sum_firstn; simpl; try omega; intros l' lw_eq.
        apply Z.add_nonneg_nonneg; try omega.
        apply limb_widths_nonneg.
        rewrite lw_eq.
        apply in_eq.
      + assert (i < length base)%nat as i_lt_length by omega.
        rewrite base_from_limb_widths_length in *.
        apply nth_error_length_exists_value in i_lt_length.
        destruct i_lt_length as [x nth_err_x].
        erewrite sum_firstn_succ; eauto.
        apply nth_error_value_In in nth_err_x.
        apply limb_widths_nonneg in nth_err_x.
        omega.
   Qed.

   Lemma nth_error_subst : forall i b, nth_error base i = Some b ->
     b = 2 ^ (sum_firstn limb_widths i).
   Proof.
     intros i b nth_err_b.
     pose proof (nth_error_value_length _ _ _ _ nth_err_b).
     rewrite nth_error_base in nth_err_b by assumption.
     rewrite two_p_correct in nth_err_b.
     congruence.
   Qed.

   Lemma base_positive : forall b : Z, In b base -> b > 0.
   Proof.
     intros b In_b_base.
     apply In_nth_error_value in In_b_base.
     destruct In_b_base as [i nth_err_b].
     apply nth_error_subst in nth_err_b.
     rewrite nth_err_b.
     apply Z.gt_lt_iff.
     apply Z.pow_pos_nonneg; omega || auto using sum_firstn_limb_widths_nonneg.
   Qed.

   Lemma b0_1 : forall x : Z, limb_widths <> nil -> nth_default x base 0 = 1.
   Proof.
     case_eq limb_widths; intros; [congruence | reflexivity].
   Qed.

  Lemma base_from_limb_widths_cons : forall l0 l,
    base_from_limb_widths (l0 :: l) = 1 :: map (Z.mul (two_p l0)) (base_from_limb_widths l).
  Proof.
    reflexivity.
  Qed.

End Pow2BaseProofs.

Section BitwiseDecodeEncode.
  Context {limb_widths} (bv : BaseSystem.BaseVector (base_from_limb_widths limb_widths))
          (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Hint Resolve limb_widths_nonneg.
  Local Notation "w[ i ]" := (nth_default 0 limb_widths i).
  Local Notation base := (base_from_limb_widths limb_widths).
  Local Notation upper_bound := (upper_bound limb_widths).

  Lemma encode'_spec : forall x i, (i <= length base)%nat ->
    encode' limb_widths x i = BaseSystem.encode' base x upper_bound i.
  Proof.
    induction i; intros.
    + rewrite encode'_zero. reflexivity.
    + rewrite encode'_succ, <-IHi by omega.
      simpl; do 2 f_equal.
      rewrite Z.land_ones, Z.shiftr_div_pow2 by auto using sum_firstn_limb_widths_nonneg.
      match goal with H : (S _ <= length base)%nat |- _ =>
        apply le_lt_or_eq in H; destruct H end.
      - repeat f_equal; rewrite nth_default_base by (omega || auto); reflexivity.
      - repeat f_equal; try solve [rewrite nth_default_base by (omega || auto); reflexivity].
        rewrite nth_default_out_of_bounds by omega.
        unfold Pow2Base.upper_bound.
        rewrite <-base_from_limb_widths_length by auto.
        congruence.
  Qed.

  Lemma nth_default_limb_widths_nonneg : forall i, 0 <= w[i].
  Proof.
    intros; apply nth_default_preserves_properties; auto; omega.
  Qed. Hint Resolve nth_default_limb_widths_nonneg.

  Lemma base_upper_bound_compatible : @base_max_succ_divide base upper_bound.
  Proof.
    unfold base_max_succ_divide; intros i lt_Si_length.
    rewrite Nat.lt_eq_cases in lt_Si_length; destruct lt_Si_length;
      rewrite !nth_default_base by (omega || auto).
    + erewrite sum_firstn_succ by (eapply nth_error_Some_nth_default with (x := 0); 
         rewrite <-base_from_limb_widths_length by auto; omega).
      rewrite Z.pow_add_r; auto using sum_firstn_limb_widths_nonneg.
      apply Z.divide_factor_r.
    + rewrite nth_default_out_of_bounds by omega.
      unfold Pow2Base.upper_bound.
      replace (length limb_widths) with (S (pred (length limb_widths))) by
        (rewrite base_from_limb_widths_length in H by auto; omega).
      replace i with (pred (length limb_widths)) by
        (rewrite base_from_limb_widths_length in H by auto; omega).
      erewrite sum_firstn_succ by (eapply nth_error_Some_nth_default with (x := 0); 
         rewrite <-base_from_limb_widths_length by auto; omega).
      rewrite Z.pow_add_r; auto using sum_firstn_limb_widths_nonneg.
      apply Z.divide_factor_r. 
  Qed.
  Hint Resolve base_upper_bound_compatible.

  Lemma encodeZ_spec : forall x,
    BaseSystem.decode base (encodeZ limb_widths x) = x mod upper_bound.
  Proof.
    intros.
    assert (length base = length limb_widths) by auto using base_from_limb_widths_length.
    unfold encodeZ; rewrite encode'_spec by omega.
    rewrite BaseSystemProofs.encode'_spec; unfold Pow2Base.upper_bound; try zero_bounds;
      auto using sum_firstn_limb_widths_nonneg.
    rewrite nth_default_out_of_bounds by omega.
    reflexivity.
  Qed.

  Lemma decode_bitwise'_nil : forall i,
    decode_bitwise' limb_widths nil i 0 = 0.
  Proof.
    induction i; intros.
    + reflexivity.
    + cbv [decode_bitwise'].
      rewrite nth_default_nil, Z.shiftl_0_l.
      apply IHi.
  Qed.

  Lemma decode_bitwise_nil : decode_bitwise limb_widths nil = 0.
  Proof.
    cbv [decode_bitwise].
    apply decode_bitwise'_nil.
  Qed.

  Lemma decode_bitwise'_succ : forall us i acc, bounded limb_widths us ->
    decode_bitwise' limb_widths us (S i) acc =
    decode_bitwise' limb_widths us i (acc * (2 ^ w[i]) + nth_default 0 us i).
  Proof.
    intros.
    simpl; f_equal.
    match goal with H : bounded _ _ |- _ => 
      rewrite Z.lor_shiftl by (auto; unfold bounded in H; specialize (H i); assumption) end.
    rewrite Z.shiftl_mul_pow2 by auto.
    ring.
  Qed.

  (* c is a counter, allows i to count up rather than down *)
  Fixpoint partial_decode us i c :=
    match c with
    | O => 0
    | S c' => (partial_decode us (S i) c' *  2 ^ w[i]) + nth_default 0 us i
    end.

  Lemma partial_decode_counter_over : forall c us i, (c >= length us - i)%nat ->
    partial_decode us i c = partial_decode us i (length us - i).
  Proof.
    induction c; intros.
    + f_equal. omega.
    + simpl. rewrite IHc by omega.
      case_eq (length us - i)%nat; intros.
      - rewrite nth_default_out_of_bounds with (us0 := us) by omega.
        replace (length us - S i)%nat with 0%nat by omega.
        reflexivity.
      - simpl. repeat f_equal. omega.
  Qed.

  Lemma partial_decode_counter_subst : forall c c' us i,
    (c >= length us - i)%nat -> (c' >= length us - i)%nat ->
    partial_decode us i c = partial_decode us i c'.
  Proof.
    intros.
    rewrite partial_decode_counter_over by assumption.
    symmetry.
    auto using partial_decode_counter_over.
  Qed.

  Lemma partial_decode_succ : forall c us i, (c >= length us - i)%nat ->
    partial_decode us (S i) c * 2 ^ w[i] + nth_default 0 us i =
    partial_decode us i c.
  Proof.
    intros.
    rewrite partial_decode_counter_subst with (i := i) (c' := S c) by omega.
    reflexivity.
  Qed.

  Lemma partial_decode_intermediate : forall c us i, length us = length limb_widths ->
    (c >= length us - i)%nat ->
    partial_decode us i c = BaseSystem.decode' (base_from_limb_widths (skipn i limb_widths)) (skipn i us).
  Proof.
    induction c; intros.
    + simpl. rewrite skipn_all by omega.
      symmetry; apply decode_base_nil.
    + simpl.
      destruct (lt_dec i (length limb_widths)).
      - rewrite IHc by omega.
        do 2 (rewrite skipn_nth_default with (n := i) (d := 0) by omega).
        unfold base_from_limb_widths; fold base_from_limb_widths.
        rewrite peel_decode.
        fold (BaseSystem.mul_each (two_p w[i])).
        rewrite <-mul_each_base, mul_each_rep, two_p_correct.
        ring_simplify.
        f_equal; ring.
     - rewrite <- IHc by omega.
       apply partial_decode_succ; omega.
  Qed.


  Lemma decode_bitwise'_succ_partial_decode : forall us i c,
    bounded limb_widths us -> length us = length limb_widths ->
    decode_bitwise' limb_widths us (S i) (partial_decode us (S i) c) =
    decode_bitwise' limb_widths us i (partial_decode us i (S c)).
  Proof.
    intros.
    rewrite decode_bitwise'_succ by auto.
    f_equal.
  Qed.

  Lemma decode_bitwise'_spec : forall us i, (i <= length limb_widths)%nat ->
    bounded limb_widths us -> length us = length limb_widths ->
    decode_bitwise' limb_widths us i (partial_decode us i (length us - i)) =
    BaseSystem.decode base us.
  Proof.
    induction i; intros.
    + rewrite partial_decode_intermediate by auto.
      reflexivity.
    + rewrite decode_bitwise'_succ_partial_decode by auto.
      replace (S (length us - S i)) with (length us - i)%nat by omega.
      apply IHi; auto; omega.
  Qed.

  Lemma decode_bitwise_spec : forall us, bounded limb_widths us ->
    length us = length limb_widths ->
    decode_bitwise limb_widths us = BaseSystem.decode base us.
  Proof.
    unfold decode_bitwise; intros.
    replace 0 with (partial_decode us (length us) (length us - length us)) by
      (rewrite Nat.sub_diag; reflexivity).
    apply decode_bitwise'_spec; auto; omega.
  Qed.

End BitwiseDecodeEncode.

Section Conversion.
  Context {limb_widthsA} (limb_widthsA_nonneg : forall w, In w limb_widthsA -> 0 <= w)
          {limb_widthsB} (limb_widthsB_nonneg : forall w, In w limb_widthsB -> 0 <= w).
  Local Notation baseA := (base_from_limb_widths limb_widthsA).
  Local Notation baseB := (base_from_limb_widths limb_widthsB).
  Context (bvB : BaseSystem.BaseVector baseB).

  Definition convert xs := @encodeZ limb_widthsB (@decode_bitwise limb_widthsA xs).

  Lemma convert_spec : forall xs, @bounded limb_widthsA xs -> length xs = length limb_widthsA ->
    BaseSystem.decode baseA xs mod (@upper_bound limb_widthsB) = BaseSystem.decode baseB (convert xs).
  Proof.
    unfold convert; intros.
    rewrite encodeZ_spec, decode_bitwise_spec by auto.
    reflexivity.
  Qed.

End Conversion.

Section UniformBase.
  Context {width : Z} (limb_width_pos : 0 < width).
  Context (limb_widths : list Z) (limb_widths_nonnil : limb_widths <> nil)
    (limb_widths_uniform : forall w, In w limb_widths -> w = width).
  Local Notation base := (base_from_limb_widths limb_widths).

   Lemma bounded_uniform : forall us, (length us <= length limb_widths)%nat ->
     (bounded limb_widths us <-> (forall u, In u us -> 0 <= u < 2 ^ width)).
   Proof.
     cbv [bounded]; split; intro A; intros.
     + let G := fresh "G" in
       match goal with H : In _ us |- _ =>
         eapply In_nth in H; destruct H as [? G]; destruct G as [? G];
         rewrite <-nth_default_eq in G; rewrite <-G end.
       specialize (A x).
       split; try eapply A.
       eapply Z.lt_le_trans; try apply A.
       apply nth_default_preserves_properties; [ | apply Z.pow_le_mono_r; omega ] .
       intros; apply Z.eq_le_incl.
       f_equal; auto.
     + apply nth_default_preserves_properties_length_dep;
         try solve [apply nth_default_preserves_properties; split; zero_bounds; rewrite limb_widths_uniform; auto || omega].
      intros; apply nth_default_preserves_properties_length_dep; try solve [intros; omega].
       let x := fresh "x" in intro x; intros;
         replace x with width; try symmetry; auto.
   Qed.

  Lemma decode'_tl_base_shift' : forall us lw,
    (forall w, In w lw -> w = width) ->
    (length us <= length lw)%nat ->
    BaseSystem.decode' (map (Z.mul (2 ^ width)) (base_from_limb_widths lw)) us =
    (BaseSystem.decode' (1 :: map (Z.mul (2 ^ width)) (base_from_limb_widths lw)) us) << width.
  Proof.
    induction us; intros ? Hin Hlength.
    + rewrite !decode_nil, Z.shiftl_0_l; reflexivity.
    + edestruct (destruct_repeat lw) as [? | [tl_lw [Heq_lw tl_lw_uniform]]]; eauto.
      - subst lw; rewrite !length_cons, nil_length0 in Hlength; omega.
      - rewrite Heq_lw in Hlength |- *.
        rewrite base_from_limb_widths_cons, decode'_cons, two_p_correct.
        cbv [tl].
        fold (BaseSystem.mul_each (2 ^ width)).
        rewrite <-!mul_each_base, !mul_each_rep.
        rewrite decode'_cons, Z.mul_add_distr_l.
        rewrite Z.shiftl_mul_pow2 by omega. rewrite Z.mul_add_distr_r.
        f_equal; try ring.
        rewrite <-Z.mul_assoc. f_equal; try ring.
        rewrite IHus by (simpl in Hlength; auto || omega).
        rewrite Z.shiftl_mul_pow2 by omega.
        reflexivity.
  Qed.

  Lemma decode_tl_base_shift : forall us, (length us < length limb_widths)%nat ->
    BaseSystem.decode (tl base) us = BaseSystem.decode base us << width.
  Proof.
    intros ? Hlength.
    edestruct (destruct_repeat limb_widths) as [? | [tl_lw [Heq_lw tl_lw_uniform]]];
        eauto; try congruence.
    rewrite Heq_lw in Hlength |- *.
    rewrite base_from_limb_widths_cons, two_p_correct.
    cbv [tl].
    apply decode'_tl_base_shift';
      auto; simpl in *; omega.
  Qed.

  Lemma decode_shift : forall us u0, (length (u0 :: us) <= length limb_widths)%nat ->
    BaseSystem.decode base (u0 :: us) = u0 + ((BaseSystem.decode base us) << width).
  Proof.
    intros.
    rewrite <-decode_tl_base_shift by (simpl in *; omega).
    case_eq limb_widths; try congruence; intros.
    rewrite base_from_limb_widths_cons, decode'_cons.
    cbv [tl].
    f_equal; ring.
  Qed.

  Lemma uniform_limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w.
  Proof.
    intros.
    apply Z.lt_le_incl.
    replace w with width by (symmetry; auto).
    assumption.
  Qed.
End UniformBase.